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A B S T R A C T 

The strong interactions at low energy scales determine the state of the supranuclear matter in the pulsar-like compact objects. It 
is proposed that the bulk strong matter could be composed of strangeons, which are quark clusters with a nearly equal number of 
three light-fla v our quarks. In this work, to characterize the strong-repulsive interactions at short distances and the non-relativistic 
nature of the strangeons, the Lennard-Jones model is used to describe the equation of state (EoS) of strangeon stars (SSs). We 
investigate the static, the slowly rotating, and the tidally deformed SSs in detail. The corrections resulted from the finite surface 
densities are considered crucially in the perturbative approaches. We also study the universal relations between the moments 
of inertia, the tidal deformabilities, and the quadrupole moments. Those results are ready to be used for various purposes in 

astrophysics, and possible constraints from contemporary observations on the parameter space of the Lennard-Jones model are 
discussed. Future observations of the pulsars’ radio signals, the X-ray emissions from the hot spots on the surface of the stars, 
and the gravitational waves (GWs) from binary mergers can give tighter constraints or even verify or falsify the existence of SSs. 
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 I N T RO D U C T I O N  

he equation of state (EoS) of the supranuclear matter in pulsar-
ike compact stars remains unknown. Traditionally, people believe
hat neutron stars (NSs) are formed in the supernova explosions.
o we ver, there is another possibility that the energetic electrons in

he collapsed stellar core are eliminated by transforming the u / d
uarks to the s quark. Witten ( 1984 ) conjectured that the pulsar-like
ompact objects should be quark stars (QSs), which contain strange
uark matter (SQM) with nearly equal number of u , d , s quarks, and
 small fraction of electrons to keep the neutrality. Some efforts have
een made to understand the state of pulsar-like compact stars in the
ramework of conventional QSs, including the MIT bag model with
lmost free quarks (Alcock, Farhi & Olinto 1986 ) and the colour-
uperconducting state model (Alford et al. 2008 ). 

Realistic densities inside pulsar-like compact stars ( ρ ∼ 2 –10 ρ0 

here ρ0 is the saturation density of nuclear matter) are not high
nough to justify the validity of perturbative quantum chromody-
amics (QCD). The perturbative QCD, based on asymptotic freedom,
orks well only at high-energy scales, E scale � 1 GeV. Ho we ver, the

tate of pressure-free strong matter at supranuclear density pertains
o non-perturbative QCD because E scale � 1 GeV, analogous to the
ase of normal atomic nuclei. In addition, the difficulties to obtain the
elativistic EoS of cold quark matter at several nuclear densities also
ome from the fact that the vast assemblies of interacting particles
ace the complicated quantum many-body problem (Alford et al.
 E-mail: lshao@pku.edu.cn (LS); r.x.xu@pku.edu.cn (RX) 
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Pub
008 ; Xu 2009 , 2018 ; Baym et al. 2018 ). The uncertainty in EoS
ntroduces additional uncertainty to the strong-field gravity tests as
ell (Shao et al. 2017 ; Shao 2019 ). 
It is phenomenologically conjectured that, in cold matter at

upranuclear density, the constituent units could be strange quark
lusters (Xu 2003 ), since the strong interaction may render quarks
rouped in quark-clusters. Each quark-cluster is composed of several
uarks (including u , d , and s quarks) condensing in position space
ather than in momentum space. A strange quark cluster is named
strangeon,’ being coined to ‘strange nucleon’ (Lai & Xu 2017 ;
u & Guo 2017 ). The astrophysically compressed baryonic matter

herefore should be in a state of strangeon matter, and pulsar-like
ompact stars could be strangeon stars (SSs). Moreo v er, at realistic
aryon densities of compact stars, the residual interaction between
trangeons could be stronger than their kinetic energy, so strangeons
ould be trapped in the potential well and the bulk of the dense
atter in the compact stars are crystallized into a solid state (Xu

003 , 2009 ). 
Although the state of bulk strong matter is essentially a non-

erturbative QCD problem and is difficult to answer from first
rinciples, the astrophysical point of view could give some hints
hat bulk strong matter could be in the form of strangeon matter.
trangeon matter may constitute the true ground state of strongly

nteracting matter rather than 56 Fe and neutron matter, and this could
e seen as a generalized Witten’s conjecture , while the traditional
itten’s conjecture focuses on the matter composed of almost free

 , d , and s quarks. 
Strangeon matter, similar to strange quark matter, is composed of

early equal numbers of u , d , and s quarks; ho we ver, dif ferent from
© 2021 The Author(s) 
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hat in strange quark matter, quarks in strangeon matter are localized 
nside strangeons due to the strong coupling between quarks. There 
re differences and similarities between SSs and NSs/QSs. On the 
ne hand, quarks are thought to be localized in strangeons in SSs,
ike neutrons in NSs, but a strangeon has three fla v ours and may
ontain more than three valence quarks. The matter at the surface of
Ss is still strangeon matter, i.e. SSs are self-bound by strong force,

ike QSs. 
Eventually the theoretical models, including NSs, QSs, and SSs, 

eed to be tested by the astrophysical observations. The model of
Ss has been found to be helpful to understand different mani- 
estations of pulsar-like compact stars. SSs had been found to be 
assive (Lai & Xu 2009a , b ) before the discovery of pulsars with
 > 2 M � (Demorest et al. 2010 ). The surface of SSs could naturally

xplain the pulsar magnetospheric activity (Xu, Qiao & Zhang 1999 ) 
s well as the subpulse-drifting of radio pulsars (Lu et al. 2019 ).
tarquakes of solid SSs could induce glitches (Zhou et al. 2004 ,
014 ; Lai et al. 2018b ) and explain the glitch activity of normal
adio pulsars (Wang et al. 2020 ). The plasma atmosphere of SSs
an reproduce the Optical/UV excess observed in X-ray dim isolated 
Ss (Wang et al. 2017 ). The tidal deformability (Lai, Zhou & Xu
019 ) as well as the light curve (Lai et al. 2018a , 2020 ) of merging
inary SSs are consistent with the results of gravitational wave 
GW) event GW170817 (Abbott et al. 2017 ) and its multiwavelength 
lectromagnetic counterparts (Kasen et al. 2017 ; Kasliwal et al. 
017 ). 
Some phenomenological models have been applied to investigate 

he EoS of SSs (Lai & Xu 2009a , b ), which may indicate some
roperties of QCD at low energy scales and have implications 
n possible astronomical observations that can give constraints on 
uch models. The strangeons are colourless, just like the molecules 
re neutral in the bulk of inert gas. Lai & Xu ( 2009b ) utilized
he Lennard-Jones model (Jones 1924 ) that describes inert gas to 
haracterize the interactions between strangeons. This model well 
haracterizes the non-relativistic nature and the strong-repulsive 
nteractions at short distances. In this work, we use this model as
he EoS and span a wide range of parameter space to investigate the
lobal properties of SSs. We model the static SSs and compare the
tructures with that of Tolman IV and Tolman VII solutions (Tolman 
939 ; Lattimer & Prakash 2005 ). 
Astrophysically, pulsars have spins and the rotation will affect the 

tructures of the stars and the spacetime itself. Hartle ( 1967 ) and
artle & Thorne ( 1968 ) gave a perturbative approach to describe

lo wly rotating relati vistic stars to the second order of angular
requency �. Later, Hartle ( 1973 ) developed this formalism to the
hird order of � and calculated the variations of moments of inertia 
or distorted NSs. One can e v aluate the change of physical quantities
t each order of � and investigate various properties of the relativistic 
tars (Chandrasekhar & Miller 1974 ; Weber & Glendenning 1991 ; 
attimer & Prakash 2001 ; Benhar et al. 2005 ; Urbanec, Miller &
tuchlik 2013 ; Yagi & Yunes 2013a , b ). Remarkably, It has been
hown that this perturbative approach can be applied with great 
ccuracy for most observed NSs, even for most millisecond pul- 
ars(Berti & Stergioulas 2004 ; Benhar et al. 2005 ; Berti et al. 2005 ).
n some models of NSs, the relative errors compared to the results
btained by numerical relativity for most quantities are less than 
 per cent if the spin frequency is less than ∼ 600 Hz (Berti &
tergioulas 2004 ; Benhar et al. 2005 ; Berti et al. 2005 ). 
In this work, we use the Hartle–Thorne approximation to study 

he rotating SSs to the third order of �. The match conditions at
he boundary of the star which are resulted from the finite surface
ensity are crucially considered. We present systematic results for 
he moments of inertia, the quadrupole moments, the eccentricities, 
hanges in the gravitational and baryonic masses, and universal 
elations between some of these quantities. The measurement of 
he moment of inertia from Lense–Thirring precession can give 
s constraints on the parameter space of SSs. The other physical
uantities and the universal relations are ready to be used to interpret
strophysical observations, such as the light curves of X-ray hotspots 
n the surface of SSs and GWs from binary SS mergers. 
For coalescing binary compact stars, the finite size of the stars

t the end of inspiral cannot be ignored. Each star is deformed in
he tidal field of the companion. The energy goes to deform the
tar and the tidal induced quadrupole moments will contribute to 
he GW phasing (Hinderer 2008 ; Damour & Nagar 2009 ; Dietrich,
inderer & Samajdar 2021 ). The phase evolution of the GWs will
e faster compared to non-spinning stars with the same component 
asses. The GW170817 event gives the first constraint on the tidal

eformability of NSs (Abbott et al. 2017 , 2018 , 2019 ). In this paper,
e study the tidal properties of SSs based on the work in Lai et al.

 2019 ) and use the posterior from LIGO/Virgo collaborations to put
onstraints on the parameter space of the Lennard-Jones model. 

Yagi & Yunes ( 2013a , b ) found a remarkable universal relation
etween the moments of inertia, the tidal deformabilities, and the 
pin induced quadrupole moments, also known as I-Lo v e-Q relation.
he relation is nearly EoS independent and the relative errors can
e less than 1 per cent for various EoS models, including NSs and
Ss. Based on our calculations of rotation and tidal deformation, we
nd that SSs in the Lennard-Jones model also satisfy the I-Lo v e-Q
elation. 

The organization of the paper is as follows. In Section 2, we
ntroduce the Lennard-Jones model of SSs. The structures of static 
Ss are discussed in Section 3. Based on the background solutions,

n Section 4, we investigate the global properties of rotating SSs in
he Hartle–Thorne approximation. In Section 5, we calculate the tidal 
eformabilities of SSs and discuss the constraints on the parameter 
pace in our model. Then we study the universal relations between
he moment of inertia, the tidal deformability, and the quadrupole 
oment for SSs in Section 6. Finally, we summarize our work in
ection 7. The ordinary differential equations that determine the 
tructures of slowly rotating relativistic stars are given in Section A.

Throughout this paper, we use the geometric units where G = c =
. The convention of the metric is ( −, + , + , + ). 

 S T R A N G E O N  STARS  IN  T H E  

E N NA R D - J O N E S  M O D E L  

n the Lennar-Jones model (Jones 1924 ), the potential between two
trangeons is (Lai & Xu 2009b ) 

 ( r) = 4 ε

[(σ

r 

)12 
−

(σ

r 

)6 
]

, (1) 

here ε is the depth of the potential well, r is the distance between
wo strangeons, and σ is the distance when u ( r ) = 0. Though simple,
his model has the properties of long-range attraction and short- 
ange repulsion. Note that the σ–ω model, which is commonly used
o describe the interactions between nucleons, can also be well de-
cribed by long-range attraction and short-range repulsion (Walecka 
974 ). The lattice simulations of QCD indicate a short-distance 
epulsion (Ishii, Aoki & Hatsuda 2007 ; Wilczek 2007 ). Moreo v er,
he repulsive hardcore is essential to generate a stiff EoS for dense
atter constituted of strangeons and plays a fundamental role in 

etermining the structures of SSs. 
MNRAS 509, 2758–2779 (2022) 
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Figure 1. The upper panel shows the relation between mass–energy density ρ
and pressure P . The Lennard-Jones models of SSs with different choices of the 
potential depth ε, the surface number density of baryons n s , and the number of 
quarks in a strangeon N q are displayed. For comparison, we also show the EoS 
models of normal NSs (grey) and QSs (black). Correspondingly, the lower 
panel shows the adiabatic index 
 for SSs (coloured), normal NSs (grey), 
and QSs (black). We name EoS of SSs according to different combinations of 
n s and ε. F or e xample, ‘LX2450’ means the surface baryon number density 
n s = 0 . 24 fm 

−3 and the potential depth ε = 50 MeV . 
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We take simple cubic lattice structures and ignore the surface
ension. The potential energy density is (Lai & Xu 2009b ) 

P = 2 ε
(
A 12 σ

12 n 5 − A 6 σ
6 n 3 

)
, (2) 

here A 12 = 6.2, A 6 = 8.4, and n is the number density of strangeons.
he lattice of strangeons may form other structures in reality, but the
ifferences should be small and do not affect the structures of SSs
ignificantly. The energy density should also include the rest energy
f strangeons, ρr , the kinetic energy from lattice vibrations, ρL , and
he kinetic energy from electrons, ρe . 

The rest energy of a strangeon is N q m q c 2 , where m q is the mass
f a quark and N q is the number of quarks in a strangeon. We take
he mass of quarks to be m q = 300 MeV, which is about one third of
he nucleon’s mass. The parameter N q is not known and we leave it
s a free parameter. In the calculations, we take N q = 18 and N q =
. A strangeon with 18 quarks is called quark-alpha (Michel 1991 ),
hich is completely symmetric in spin, fla v our, and colour spaces. 
The vibration energy can be obtained by using the Debye ap-

roximation of lattice. The vibrations of the cubic lattice can be
ecomposed into 3 N independent oscillation modes (Lai & Xu
009b ) and the vibration energy density ρL = 9(6 π2 ) 1/3 

� vn 4/3 /8,
here v is the speed of sound waves. Compared to the sum of
otential energy and rest energy, the lattice vibration energy is small
ven if one assumes v is equal to the speed of light (Lai & Xu 2009b ).
or this reason, we ignore the contribution of lattice vibration energy

n our calculations. 
A small fraction of electrons is needed to keep the equilibrium

f chemical potential (Witten 1984 ; Alcock et al. 1986 ). In the MIT
ag model of SQM, electrons per baryon are determined by the
ass of strange quarks m s and the coupling constant αs between

uarks (Farhi & Jaffe 1984 ). If one fixes the mass m s of the strange
uarks, a larger coupling constant αs will lead to a larger fraction of
lectrons per baryon. When αs equals 0.3, the number of electrons
er baryon is smaller than 10 −4 (Farhi & Jaffe 1984 ; Lai & Xu
009a , b ). In the case of strangeons, we have applied the strong
nteractions between strangeons. The number density of electrons
hould be small despite the concrete number is still not clear. Even if
e take 10 −4 , the Fermi energy of electrons still can be ignored

ompared to the contribution of potential energy and rest-mass
nergy of strangeons (Lai & Xu 2009b ; Lai et al. 2019 ). 

The total energy density of the zero-temperature dense matter
omposed of strangeons reads 

= 2 ε
(
A 12 σ

12 n 5 − A 6 σ
6 n 3 

) + nN q m q c 
2 . (3) 

rom the first law of thermodynamics, one derives the pressure 

 = n 2 
d( ρ/n ) 

d n 
= 4 ε

(
2 A 12 σ

12 n 5 − A 6 σ
6 n 3 

)
. (4) 

t the surface of the SSs, the pressure becomes zero and we obtain
he surface number density of strangeons as ( A 6 /(2 A 12 σ

6 )) 1/2 . For
onvenience, we transform it to the number density of baryons 

 s = 

(
A 6 

2 A 12 

)1 / 2 
N q 

3 σ 3 
. (5) 

F or a giv en number of quarks N q in a strangeon, the EoS of SSs
s completely determined by the depth of the potential ε and the
umber density of baryons n s at the surface of the star. The nucleon–
ucleon scattering data indicate that the internucleon potential well
ies in the range of ∼ 50–120 MeV for the 1 S 0 (spin singlet and
 -wave) channel (Stoks et al. 1994 ; Wiringa, Stoks & Schiavilla
995 ; Machleidt 2001 ); see fig. 1 of Ishii et al. ( 2007 ). Since the
trong interactions are not sensitive to the fla v our of quarks, we
NRAS 509, 2758–2779 (2022) 
hoose ε spanning in the range of 20–100 MeV, which is similar
o the internucleon potential and enough to trap the strangeons in
he potential well. The surface baryonic density n s should be in the
ame order as the nuclear saturation density, n 0 = 0 . 16 fm 

−3 . But
nlike proton or neutron with 3 quarks, we take N q to be 9 or 18 for
trangeons. The interactions may group the quarks more compactly
ompared to nuclei with the same number of quarks. Therefore, we
et n s lie in the range of 0 . 24 –0 . 36 fm 

−3 , which corresponds to 1 . 5 n 0
o 2 . 25 n 0 . 

In the upper panel of Fig. 1 , we show the EoS of SSs for N q =
8 and N q = 9. Different surface densities and potential depths are
hosen. We also present the EoS of normal NSs and QSs (Lattimer &
rakash 2001 ; Lackey, Nayyar & Owen 2006 ), including the models
or normal NSs and SQMs for QSs. Compared to normal NS models,
he surface densities of SSs and QSs are not zero and in the order
f nuclear density, which originate from the fact that SSs and QSs
re self-bound systems while normal NSs are gravitational-bound
ystems. 

One can surely neglect the entropy gradient for the zero temper-
ture EoS of SSs. Therefore, the increases in pressure and density
oward the centre of the star are adiabatic (Shapiro & Teukolsky
983 ). The adiabatic index 
 is defined as 

 = 

n 

P 

d P 

d n 
= 

ρ + P 

P 

∂P 

∂ρ
, (6) 

hich determines the change of pressure P associated with the
ariations of the local density n of particles (Shapiro & Teukolsky
983 ). For relativistic stars in equilibrium, the adiabatic index 
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easures the stiffness of the EoS. In the lower panel of Fig. 1 , we
how the relation between the adiabatic index 
 and the mass-energy 
ensity ρ. One notices that the adiabatic index for SSs is larger than
hat of NSs, which indicates that SSs are stiffer than normal NSs.
he adiabatic index for QSs has the same trend as the SSs. But it
ecomes much smaller than that of SSs at high densities. The EoS
f QSs is taken as P = ( ρ − 4 B )/3, where B is the bag constant. At
ow densities, 
 goes up since the bag constant is very large. But
s the densities increase, the free quarks in QSs become relativistic 
nd the EoS is softened. For SSs, the repulsive hardcore and the
on-relativistic nature of the particles make the EoS always be stiff. 
One main concern of the Lennard-Jones model for SSs is that the

diabatic sound speed c s = ( ∂ P / ∂ ρ) 1/2 turns into superluminal in
igh pressure. The possibility that the adiabatic sound speed c s in 
ltradense matter exceeds the speed of light has been discussed in 
ome literature (Bludman & Ruderman 1968 ; Ruderman 1968 ; Ca-
oraso & Brecher 1979 , 1983 ; Ellis, Maartens & MacCallum 2007 ).
he central question is: what does ∂ P / ∂ ρ mean for a relativistic fluid?
he expression ∂ P / ∂ ρ is borrowed from Newtonian hydrodynamics 
nd comes from a static calculation of the EoS P = P ( ρ) by ignoring
he dynamics of the medium (Lai & Xu 2009b ). One assumes
he infinite speed of interactions and finite temperature. The static 
ound speed ( ∂ P / ∂ ρ) 1/2 agrees with the dynamical one. Ho we ver,
or relativistic ultradense matter, if one assumes zero temperature 
nd finite speed of the interactions between particles, the adiabatic 
ound speed is no longer a dynamically meaningful speed of the 
isturbances, but only a measurement of local stiffness (Caporaso & 

recher 1983 ; Lai & Xu 2009b ). From the underlying microscopic
icture, Bludman & Ruderman ( 1968 ) and Caporaso & Brecher 
 1979 ) gave dynamical calculations that particles in dense matter 
nteracting with one another by retarded fields. They found that the 
ropagating sound waves always have a speed less than or equal to
he speed of light although ∂ P / ∂ ρ > 1. 

For SSs, the bulk of the stars are in a solid state and strangeons form
attice. Inspired by Bludman & Ruderman ( 1968 ) and Caporaso &
recher ( 1979 ), Lu et al. ( 2018 ) carried out a 1D chain model to
alculate the dynamical speed of the sound waves in SSs. They found
hat the causality condition is al w ays satisfied although ( ∂ P / ∂ ρ) 1/2 

an be larger than the speed of light. The ultra stiffness and
he violation of commonly used causality limit can lead to many 
nteresting global properties of SSs. Interested readers are referred 
o the abo v e literature for details. 

 EQUILIBRIU M  B  AC K G R  O U N D  O F  

PHERIC A L  A N D  STATIC  STARS  

he line element of an isolated and non-spinning relativistic star can 
e written as 

 s 2 = g αβd x αd x β = −e νd t 2 + e λd r 2 + r 2 
(
d θ2 + sin 2 θd φ2 

)
, (7) 

here ν and λ are functions of r . Since the star is static, we take the
our-velocity u α as 

 

t = e −ν/ 2 , u 

i = 0 , ( i = r , θ , φ) . (8) 

e approximate the stress-energy tensor of SSs as perfect fluid, 

 αβ = ( ρ + P ) u αu β + P g αβ , (9) 

here ρ and P are the energy density and the pressure. By taking e λ =
/(1 − 2 m / r ) and substituting equations (7) and (9) in the Einstein
quations, one obtains the Tolman–Oppenheimmer–Volkoff (TOV) 
quations for spherical and static relativistic stars 
d m 

d r 
= 4 πr 2 ρ , (10) 

d ν

d r 
= 

2( m + 4 πr 3 P ) 

r( r − 2 m ) 
, (11) 

d P 

d r 
= − ( ρ + P ) 

(
m + 4 πr 3 P 

)
r( r − 2 m ) 

, (12) 

here m is the gravitational mass enclosed in radius r . Integrating
quations (10)–(12) with the boundary conditions at the centre of the
tar 

 ( r) | r= 0 = 0 , ν( r) | r= 0 = νc , P ( r) | r= 0 = P c , (13) 

nd the EoS of SSs in equations (3) and (4), one obtains the stellar
tructures of isolated and non-spinning SSs. Here P c is the pressure at
he centre of the star. The constant νc can be determined by matching
he interior and exterior solutions at the boundary of the star. 

In Fig. 2 , we display the mass–radius relations of SSs with different
hoices of N q , n s , and ε. Because the EoS of SSs in the Lennard-Jones
odel is quite stiff and the maximal mass of SSs can be o v er 3 M �

or large parameter space (Lu et al. 2018 ; Xu 2018 ). The disco v eries
f massive pulsars, PSR J0348 + 0432 (Antoniadis et al. 2013 ) and
SR J0740 + 6620 (Fonseca et al. 2021 ), at ∼ 2 M � via pulsar timing
upport the stiffness property and more massive ones (e.g. ≥ 2 . 5 M �)
re expected for our model. 

SSs are self-bounded by strong interactions. The trend of the mass–
adius relation is basically the same as that of QSs. We can understand
t with the help of the adiabatic index 
 shown in the lower panel of
ig. 1 . At low densities, 
 → ∞ and the gravitational field is weak,
MNRAS 509, 2758–2779 (2022) 
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Figure 3. The relation between the maximal mass and the central mass–
energy density for SSs, normal NSs, and QSs. The M max –ρc relation for 
d P /d ρ = 1 and d P /d ρ = 1/3 are showed. The former bounds the central 
densities of NSs while SSs can pass o v er this line. The latter ef fecti vely bounds 
the existence of deconfined quarks in stars. The Tolman IV and Tolman VII 
solutions coupled with d P /d ρ = 1 are also illustrated (Lattimer & Prakash 
2005 ; Lattimer 2012 ). 
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hich leads to R ∝ M 

1/3 . As the central densities become larger,
he GR effect becomes dominant and it results in the formation
f a maximal mass. For QSs, the quarks are nearly free and the
nteractions are added in a perturbative way. As the central density
ncreases, the quarks become more and more relativistic and the EoS
s softened with 
 → 4/3. Therefore, the maximal mass can hardly
each 2 M � (Lattimer & Prakash 2001 ). While for SSs, the quarks are
rouped into non-relativistic clusters and the interactions between
trangeons are non-perturbative. We conjecture that the hardcore
xists for strangeons just like that for nuclei (Ishii et al. 2007 ;
ilczek 2007 ), and use the Lennard-Jones model to characterize

his important feature. The hardcore will make the EoS very stiff.
he adiabatic index 
 is much larger than QSs at high densities (see
ig. 1 ). Therefore, the maximal mass � 3 M � is possible. 
The detailed behaviours of the mass–radius relations for different

hoices of parameters can be basically understood as follows. For
iven n s , a smaller N q means that the distance σ should be smaller
ccording to equation (5). Compared to the case of N q = 18, the
diabatic index 
 for N q = 9 is larger and the EoS is stiffer.
onsequently, for given n s and ε, the radius at given mass and the
aximal mass are larger for N q = 9. If N q is fixed, the parameters
 s and ε completely determine the EoS. Both the increase of the
otential depth ε and the decrease of surface density n s make a stiffer
oS since the repulsive force is amplified. For example, the LX2430

s softer than LX2450, but stiffer than LX3630. 
Another important feature is that the mass–radius relations of SSs

an invade into the commonly used causality limit R = 2.824 M
Lattimer 2012 ). This limit assumes that the EoS has a single
arameter ρ0 and satisfies the relation P = 0 for ρ < ρ0 and P = ρ −
0 for ρ ≥ ρ0 . Integrating TOV equations with this EoS, one obtains

he maximal mass of NSs to be M max � 4.09( ρs / ρ0 ) 1/2 M � (Lattimer
012 ), where ρs is the nuclear saturation density. If one knowns the
oS approximately up to 2 ρs , the maximal mass of NSs should
e about 3 M � and the central density is constrained to ρc ≤
0.8 ρs (M �/ M max ) 2 (Rhoades & Ruffini 1974 ; Lattimer & Prakash
005 ; Lattimer 2012 ), which is denoted as d P /d ρ = 1 in Fig. 3 . As
NRAS 509, 2758–2779 (2022) 
e suggested before, this limit just represents the fact that the EoS is
ery stiff but the causality condition is still satisfied at least for SSs.
herefore, the maximal mass can be easily larger than 3 M � and the
 max –ρc relation for SSs can surpass this limit. 
The MIT bag model of QSs satisfies P = ( ρ − 4 B )/3 and d P /d ρ

quals 1/3 all o v er the star. The central density is constrained to ρc 

30.8 ρs (M �/ M max ) 2 , which is a factor of 0.607 lower than hadronic
Ss (Rhoades & Ruffini 1974 ; Lattimer & Prakash 2005 ; Lattimer
012 ). The M max –ρc relation in this condition is also presented in
ig. 3 . As mentioned by Lattimer ( 2012 ), this relation not only
onstrains the central densities of pure SQM but also bounds a
ignificant deconfined quarks that are mixed in normal NSs. This
eature is vital to distinguish QSs and SSs. If we believe that the
ulsar-like compact objects have significant number of s quarks, the
uarks may not be deconfined and SSs are supported in some way
nce much more massive pulsars (e.g. ≥ 2 . 5 M �) are found. 
To compare the analytical solutions of the Einstein equations

ith numerical solutions with modelled EoS can give us some
nsights to the nature of pulsar-like compact objects. In Fig. 3 ,
e also illustrated the Tolman VII solution for gravitational bound

ystems and Tolman IV solution for self-bound systems (Tolman
939 ; Lattimer & Prakash 2005 ) that coupled with d P /d ρ = 1. For
ormal NSs and QSs, the Tolman VII solution sets a stringent upper
imit to the central density of the maximal mass (Lattimer & Prakash
005 ). Ho we ver, the SSs in the parameter space that we used can
urpass the Tolman VII solution. The Tolman IV solution still has
arger maximal masses than the SSs. 

In the following sections, we will investigate the slow rotation
nd the tidal deformation of SSs as perturbations on the background
olution of spherical and static stars that are given above. 

 SLOW LY  ROTATI NG  S T R A N G E O N  STARS  

o the order �3 , the line element of a slowly rotating relativistic star
s (Hartle 1967 , 1973 ; Hartle & Thorne 1968 ; Benhar et al. 2005 ) 

d s 2 = −e ν( r) [1 + 2 h ( r, θ )]d t 2 + e λ( r) 

[
1 + 

2 m 

∗( r, θ ) 

r − 2 m ( r) 

]
d r 2 

+ r 2 [1 + 2 k 2 ( r, θ )] 
{

d θ2 + sin 2 θ [d φ − w( r, θ )d t] 2 
}+ O( �4 ) . 

(14) 

he metric is invariant under the combined transformations of t →
t and φ → −φ. Therefore, the function w( r , θ ) only contains

dd orders of � while the functions h ( r , θ ), m 

∗( r , θ ), and k 2 ( r , θ )
nly include the even orders of �. We can expand these perturbative
orrections with the spin-weighted spherical harmonics (Hartle 1967 ,
973 ). 
The functions h ( r , θ ), m 

∗( r , θ ), and k 2 ( r , θ ) are of order �2 and
nly contain l = 0 and l = 2 terms, 

 ( r, θ ) = h 0 ( r) + h 2 ( r) P 2 ( cos θ ) + O 

(
�4 

)
, (15) 

 

∗( r, θ ) = m 0 ( r) + m 2 ( r) P 2 ( cos θ ) + O 

(
�4 

)
, (16) 

 2 ( r, θ ) = [ v 2 ( r) − h 2 ( r) ] P 2 ( cos θ ) + O 

(
�4 

)
, (17) 

here P 2 (cos θ ) is the Legendre polynomial with l = 2 and the
unction v 2 ( r ) is introduced for simplicity. Note that the l = 0
ontribution to k 2 has been eliminated by a coordinate transformation.
he function w( r , θ ) can be expanded as (Hartle 1973 ; Benhar et al.
005 ) 

( r, θ ) = ω( r) + w 1 ( r) − w 3 ( r) 
1 

sin θ

d P 3 ( cos θ ) 

d θ
+ O 

(
�5 

)
. (18) 
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ere, P 3 (cos θ ) is the Legendre polynomial with l = 3. The function
( r ) is the l = 1 term in the first order of �. The functions w 1 ( r )
nd w 3 ( r ) are of order �3 , which represent l = 1 and l = 3 terms,
espectively. 

In the Hartle–Thorne coordinate, the four velocity of the fluid can 
e represented as 

u 

t = 

[− (
g t t + 2 �g tϕ + �2 g ϕϕ 

)]−1 / 2 

= e −ν/ 2 

[
1 + 

1 

2 
r 2 sin 2 θω̄ 

2 e −ν − h 0 − h 2 P 2 

]
, 

 

r = u 

θ = 0 , u 

ϕ = �u 

t , (19) 

here the quantity, 

¯  ( r) = � − ω( r) , (20) 

epresents the angular velocity of the fluid element relative to the local 
nertial frame to order �. It plays an important role in determining
tellar structures. 

For rotating stars, the fluid elements are displaced. To guarantee 
he self consistency of the perturbation theory, Hartle ( 1967 ) used
 special coordinate system that maps the isodensity surface which 
ies at coordinate ( ̃  R , ˜ � ) in an unperturbed star to 

 = 

˜ R + ξ0 

(
˜ R 

) + ξ2 

(
˜ R 

)
P 2 

(
cos ˜ � 

) + O 

(
�4 

)
, θ = 

˜ � , (21) 

or the rotating star. The displacements ξ 0 and ξ 2 describe the 
pherical and quadrupole deformations of the star separately. In this 
ay, the pressure and density are known functions for both of the
on-rotating and rotating configurations. It is formally equi v alent to 
ork in the original ( r , θ ) coordinate with the variations of pressure
 , energy density ρ, and baryonic density ρ̄ to be (Hartle 1967 ;
artle & Thorne 1968 ) 

P = ( ρ + P ) [ p 0 + p 2 P 2 ( cos θ ) ] , (22) 

ρ = ( ρ + P ) d ρd P [ p 0 + p 2 P 2 ( cos θ ) ] , (23) 

ρ̄ = ( ρ + P ) d ̄ρd P [ p 0 + p 2 P 2 ( cos θ ) ] . (24) 

he dimensionless quantities p 0 and p 2 are defined as 

 0 ( r) = −ξ0 ( r ) 

[
1 

ρ + P 

d P 

d r 

]
, p 2 ( r ) = −ξ2 ( r) 

[
1 

ρ + P 

d P 

d r 

]
, 

(25) 

hich are functions of r and e v aluate the pressure perturbation. Then,
he stress-energy tensor of the slowly rotating star reads 

 

β
α = −( ρ + δρ + P + δP ) u αu 

β + ( P + δP ) δα
β . (26) 

The structures of slowly rotating relativistic stars are determined 
y the perturbative functions ω, h 0 , m 0 , p 0 , h 2 , m 2 , v 2 , p 2 , w 1 , and
 3 , which can be calculated from systematic differential equations 
ith appropriate boundary conditions. The types of stars that we 
ant to solve determine the boundary conditions. A rigidly rotating 

tar is specified by two parameters which can be diversely taken as
he central density ρc and the angular velocity �, or the baryonic 

ass M̄ and the angular momentum J , or other combinations (Hartle 
973 ; Stergioulas 2003 ). 
The constant central density sequence is commonly used and can 

e proceeded as follows. (i) Choose a central density ρc and integrate 
he TOV equation with a given EoS. The structure of the static and
pherical background is determined. One obtains the gravitational 
ass M , the baryonic mass M̄ , and the radius of star R . (ii) Keep the

entral density fixed and give a rigid angular frequency � to the star.
hen, one calculates the corrections to the first, the second, and the
hird order of �. This procedure is first formulated in Hartle ( 1967 )
o the second order of � and has been used in numerous literature
o discuss slowly rotating relativistic stars (Hartle & Thorne 1968 ;
handrasekhar & Miller 1974 ; Weber & Glendenning 1991 ; Weber &
lendenning 1992 ; Berti et al. 2005 ; Urbanec et al. 2013 ; Yagi &
unes 2013a , b ). 
An advantage of this method is that all the configurations with

ifferent angular velocities but the same central density can be 
btained by rescaling a single case with a specific angular velocity.
e take the angular velocity �∗ = ( M / R 

3 ) 1/2 as the reference angular
requency in our calculations. For normal NSs, this angular frequency 
asically represents the limit when the matters on the equator of the
tar are shed. The mass M and radius R are that of non-rotating
onfiguration. In practice, we first calculate a physical quantity F 

∗
n 

t order n for a given central density and the angular frequency �∗.
hen the quantity F n for a smaller frequency �, where the slow

otation approximation is satisfied, can easily be obtained by 

 n = ( �/�∗) n F 

∗
n , n = 1 , 2 , 3 . (27) 

We present detailed differential equations and boundary conditions 
or ω, h 0 , m 0 , p 0 , h 2 , m 2 , v 2 , p 2 , w 1 , and w 3 in the Appendix A. In the
ollowing sections, we will discuss the physical quantities related to 
he rotation at each order. Since the change in moment of inertia for
 given baryonic mass is important in some physical processes, such
s pulsar glitches and spin evolutions, we will also study the constant
aryonic mass sequence in the third order of � and the corrections
o the moment of inertia as well. 

.1 First order: Angular momentum, moment of inertia, and 

he dragging of the local inertial frame 

he axial symmetry of the system leads to the existence of a
onserved angular momentum current 

 

α
tot = T αβηβ , (28) 

here ηβ is the Killing vector corresponding to the rotation sym- 
etry. A conserved total angular momentum J tot can be defined by

nte grating J αtot o v er an y space-lik e hypersurf ace (Hartle & Sharp
967 ; Hartle 1973 ; Misner, Thorne & Wheeler 1973 ). We can
aturally choose the t = constant hypersurface and the total angular
omentum is 

 tot = 

∫ 
J 0 d V = 

∫ √ −g T t φd 3 x = 

1 

8 π

∫ √ −g R 

t 
φd 3 x , (29) 

here g is the determinant of the 4D metric and d V = 

√ −g d 3 x is
he proper volume element. To the first order of �, the star remains
o be spherical and the angular momentum J is of order �, 

 = 

1 

6 

[
r 4 j ( r) 

d ̄ω 

d r 

] ∣∣∣∣
r= R 

, (30) 

here we have introduced j ( r ) = e −( ν + λ)/2 . Then the moment of
nertia can be calculated with I = J / �, which is a zeroth-order
uantity and only depends on the structure of spherical and static
ackground solution. 
For normal NSs and QSs, it has been shown by Lattimer & Prakash

 2001 ) and Bejger & Haensel ( 2002 ) that the dimensionless quantity
 / MR 

2 and the compactness C ≡ M/R satisfy two distinct EoS-
nsensiti ve quasi-uni versal relations. In Fig. 4 , we plot the relation
etween I / MR 

2 and M / R for normal NSs and QSs. For SSs, we
nd that different parameters also indicate a nearly EoS-insensitive 
urve, which is distinct from normal NSs and also deviates from QSs
MNRAS 509, 2758–2779 (2022) 



2764 Y. Gao et al. 

Figure 4. The relation between dimensionless moment of inertia I / MR 

2 and 
the compactness C for N q = 18 and N q = 9. For comparison, we also plot 
the relations for normal NSs (grey), QSs (black), and incompressible fluid 
(magenta). 
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Figure 5. The relation between the rescaled moment of inertia I / M 

3/2 and 
mass of stars M . The relations for normal NSs (grey dashed lines) and QSs 
(black dashed lines) are also displayed. The vertical line represents the mass 
of PSR 0737 − 3039A, M = 1.338M �. The pink shaded region denotes 
a hypothetical 10 per cent measurement of the moment of inertia for PSR 

0737 − 3039A with its centre value 40 km 

2 M 

−1 / 2 
� . 
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n the condition of large compactness. As the compactness M / R →
, The quantity I / MR 

2 for SSs and QSs tends to be the value for
ncompressible fluid in Newtonian gravity, namely 0.4. Moreo v er,
s the compactness increases, QSs deviate from the incompressible
uid limit while SSs are still very close to this limit, which results
rom the fact that SSs have hardcore at short distances and the EoS
s much stiffer than QSs. 

A spinning pulsar in binary system will drag the frame and
ntroduce relativistic spin–orbit couplings (Barker & O’Connell
975 ). This coupling between the orbit angular momentum and the
pin angular momenta, also known as the Lense–Thirring precession,
s related to the moment of inertia of the spinning pulsar. It produces
wo observable effects which could be observed with pulsar timing
Damour & Schaefer 1988 ; Lattimer & Schutz 2005 ). First, the
pin angular momenta of the pulsars will precess around the total
ngular momentum of the binary system if the spin and the orbit
ngular momenta are not aligned. Since the total angular momentum
s conserved, 1 the precession of the spins will induce a compensating
recession of the orbit angular momentum and the orbit inclination
ngle will change correspondingly. Second, the spin–orbit coupling
akes an advance of the periastron of the orbit (Hu et al. 2020 ). 
The spin of one star (component A) usually spins much faster

han the companion (component B). The contribution to the Lense–
hirring effect of star B can usually be neglected. The precession
f the orbital plane causes a periodic deviation of the time-of-arri v al
f pulses from pulsar A. The period departure is proportional to
 A �A cos i (Lattimer & Schutz 2005 ), where I A and �A are the
oment of inertia and spin angular velocity of pulsar A, and i is

he inclination angle of the orbit plane. The periastron advance due
o Lense–Thirring effect is proportional to I A �A , which is a tiny effect
ompared to the first post-Newtonian (PN) term and is opposite to
he direction of orbital motion. One can notice that the moment of
nertia will enter into those observational effects. Thus the search
f Lense–Thirring effect of pulsars will tell us information on the
oment of inertia. 
 The losses of the angular momentum due to the GW radiation are higher 
rder contributions, which can be neglected in this problem. 

t  

P  

l  

p  

I  

NRAS 509, 2758–2779 (2022) 
The most promising candidate of detecting Lense–Thirring pre-
ession is the double pulsar system PSR J0737 − 3039A/B. This
elativistic system (orbital period � 2 . 45 h) contains two pulsars
ith spin period P A � 22 ms and P B about 122 times larger than
 (Burgay et al. 2003 ). One can neglect the contribution to Lense–
hirring effect of pulsar B. The angle between the spin angular
omentum of pulsar A and the orbital angular momentum is very

mall, which makes the periodic modulations due to the precession
f the orbital plane hard to measure since cos i � 0. Ho we ver, it is
ound that the advance of the periastron is possible to be measured
o a accuracy of ∼ 10 per cent in several years of timing (Kramer &

ex 2009 ). This measurement can put important constraints on the
oS of NSs (Lattimer & Schutz 2005 ). Recently, Hu et al. ( 2020 )

nvestigated the prospects for constraining the moment of inertia of
ulsar A in details by simulating the timing observations with the
eerKAT and the SKA (Shao et al. 2015 ; Weltman et al. 2020 ). The

esults suggest a measurement of moment of inertia I A to an accuracy
f 11 per cent at 68 per cent confidence level. 
In Fig. 5 , we plot the relations between the rescaled moment of

nertia I / M 

3/2 (to reduce the range of the coordinate) and mass of stars
 for SSs with N q = 18, normal NSs, and QSs. For normal NSs,

he rescaled moment of inertia is nearly monotonically decreasing
ith respect to the increase of mass. While the relations for QSs

nd SSs are inverse except for very large masses. We also plot
 hypothetical 10 per cent measurement of the quantity I / M 

3/2 for
SR 0737 − 3039A (Hu et al. 2020 ) with the central value to be
0 km 

2 M 

−1 / 2 
� . If this is the case, some stiff EoSs of normal NSs, as

ell as EoSs LX2430 and LX2450 of SSs with N q = 18, will be
xcluded. 

F or giv en N q , the EoS of SSs in the Lennard Jones model is
etermined by two parameters, the potential depth ε and the surface
aryonic number density n s . Each pair of ε and n s also corresponds
o a specific maximal mass of SSs and a unique moment of inertia for
SR 0737 − 3039A. Therefore, in Figs 6 and 7 , we plot the contour

ines for maximal mass and moment of inertia spanning across the
arameter space of ε and n s for N q = 18 and N q = 9, respectively.
f the moment of inertia of PSR 0737 − 3039A is measured in the
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Figure 6. Contours of maximal masses M max (blue) and moment of inertia 
I 45 ( I/ 10 45 g cm 

2 ) of PSR 0737 − 3039A (red) for SSs with N q = 18. 

Figure 7. Same as Fig. 6 , for N q = 9. 
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uture, one can put constraints on the parameter space of ε and n s ,
nd the maximal mass of SSs. 

.2 Second order: Spherical and quadrupole deformations 

s we mentioned before, to the second order of �, the star will
e deformed and the isodensity surface at radial coordinate r in the
on-rotating star will be displaced to r + ξ 0 ( r ) + ξ 2 ( r ) P 2 (cos θ )
n the rotating configuration (Hartle & Thorne 1968 ). According 
o the definition of the ‘pressure perturbation factor’ p 0 and p 2 in
quation (25), the displacements ξ 0 and ξ 2 can be represented as 

0 ( r) = −p 0 ( ρ + P ) / (d P / d r) = p 0 r( r − 2 m ) / ( m + 4 πr 3 P ) , 

(31) 

2 ( r) = −p 2 ( ρ + P ) / (d P / d r) = p 2 r( r − 2 m ) / ( m + 4 πr 3 P ) , 

(32) 
hich are second order of � and are related to the spherical
nd quadrupole deformations, respectively . Correspondingly , the 
erturbative functions of order �2 can be divided into two classes: 
i) the l = 0 functions, m 0 , h 0 , and p 0 , that describe the spherical
tretching of the star; (ii) the l = 2 functions, h 2 , v 2 , m 2 , and p 2 , that
escribe the quadrupole deformation of the star. 
One may directly use ξ 0 ( r ) and ξ 2 ( r ) to define the mean radius

nd the eccentricity of the isodensity surface in the Hartle–Thorne 
oordinate (Hartle 1967 ; Hartle & Thorne 1968 ) 

¯ HT = r + ξ0 ( r) , (33) 

( r) HT = 

[
(radius at equator) 2 / ( radius at pole ) 2 − 1 

]1 / 2 

= [ −3 ξ2 ( r ) /r ] 
1 / 2 , (34) 

hich are not invariant under the transformation of coordinate 
ystem. To give an invariant parametrization of the isodensity surface, 
ne needs to embed the geometry into a 3D flat space (denoted with
olar coordinates r ∗, θ∗, and φ∗) and search for the surface that
as the same intrinsic geometry as the isodensity surface of the star
Hartle & Thorne 1968 ; Chandrasekhar & Miller 1974 ). 

To the second order of �, the desired surface in flat space is a
pheroid with the equation (Hartle & Thorne 1968 ) 

 

∗ (θ∗) = r + ξ0 ( r) + 

{ 

ξ2 ( r) + r [ v 2 ( r) − h 2 ( r) ] 
} 

P 2 

(
cos θ∗) . 

(35) 

he mean radius of the spheroid is 

¯ ∗ = r + ξ0 ( r) , (36) 

nd the eccentricity can be defined as 

( r) = 

[
(radius at equator) 2 / ( radius at pole ) 2 − 1 

]1 / 2 

= [ −3 ( v 2 − h 2 + ξ2 /r ) ] 
1 / 2 . (37) 

he mean radius of the star, R̄ , and the eccentricity of the surface of
he star, e s , can be obtained by setting r = R . 

Since the fluid elements are displaced and the star comes to a
ew equilibrium state, the baryonic mass, the gravitational mass, 
nd the quadrupole moment also change. To obtain the deformation 
f the star and changes in various physical quantities, we need to
ive the solutions of the l = 0 and l = 2 perturbative functions.
umerically, One integrates the differential equations of those 
erturbative functions in Appendix A with appropriate boundary 
onditions at the centre of the star and at infinity . Fortunately , the
nalytical solutions exist outside of the star with some undetermined 
onstants. One therefore can integrate the differential equations for 
erturbative functions to the radius R and match the results with the
xterior solutions to ascertain the undetermined constants. 

A technical problem needs to be stressed. For SSs or QSs, the
urface density drops from nuclear densities to zero and some 
hermodynamical quantities such as pressure do not admit regular 
aylor expansions in ( r − R ) when r → R (Damour & Nagar
009 ). F or e xample, the differential equations involving the terms
 ρ + P )d ̄ρ/ d P or ( ρ + P )d ρ/d P are singular across the surface of
he star. To solve the issue, one can treat the baryonic density ρ̄( r) and
he mass–energy density ρ( r ) as inverted step functions across the
urface of the star. Then the terms ( ρ + P )d ̄ρ/ d P and ( ρ + P )d ρ/d P
t the boundary of the star can be represented as 

d ̄ρ

d P 

( ρ + P ) = ρ̄δ( r − R ) r( r − 2 m ) / ( m + 4 πr 3 P ) , (38) 

d ρ

d P 

( ρ + P ) = ρδ( r − R ) r( r − 2 m ) / ( m + 4 πr 3 P ) , (39) 
MNRAS 509, 2758–2779 (2022) 
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Figure 8. The spherical stretching due to rotation. For clarity, we only shows 
the results for EoS LX3630 ( N q = 18), AP4, and SQM3. The upper panel 
shows the fractional change ξ0 ( r )/ r of the isodensity surface at the radial 
coordinate r , normalized by the fractional change ξ0 ( R )/ R at the surface of 
the star, where we take M = 1 . 4 M � for the non-rotating configuration. In 
the lower panel, we display the relation between the spherical displacement 
at the surface of the star ξ0 ( R ) and the compactness C. We take the angular 
frequency to be �∗. For a fixed central density, the stretching at the surface 
ξ0 ( R ) for a smaller angular velocity � can be obtained by multiplying the 
factor ( �/ �∗) 2 . 
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here we have used the expression of d P /d r in equation (12).
umerically, we first integrate the differential equations in the
pen interval 0 < r < R and obtain the value y ( R −) just inside
f the star, where y is a physical quantity depending on the radial
oordinate r . Secondly, we add the contributions from the integration
f δ function at the surface of the star and get the value just
utside of the star y ( R + 

). Then, the undetermined constants are
btained by matching y ( R + 

) with the exterior solutions. Physically,
t means that one must consider the match conditions to guarantee
he continuity of spacetime. The physical quantities in the interior
f the star � 

− and the exterior vacuum region � 

+ are matched on a
ommon boundary � 0 = � 

±( r = R ±). F or conv enience, we define
 y] : = y + 

∣∣
� 0 

− y −
∣∣
� 0 

(Reina 2016 ; Reina et al. 2017 ). 

.2.1 Spherical deformations: change in the gravitational mass 
nd the baryonic mass 

n the upper panel of Fig. 8 , we show the fractional change ξ 0 ( r )/ r
f the isodensity surface at the radial coordinate r normalized by the
ractional change ξ 0 ( R )/ R at the surface of the star. The behaviors of
 ξ 0 ( r )/ r )/( ξ 0 ( R )/ R ) reveal the density distribution inside of the star
Hartle & Thorne 1968 ). For an EoS of normal NSs, AP4, the star
as a dense core and an envelope, and the density distribution is
ore dif fusi ve than the EoS of SSs and QSs. As a consequence,

he spherical stretching is small in the core and increases in the
nvelope of the star. For SSs and QSs, the densities inside of the star
re more homogeneous than normal NSs, and the variations of the
ractional stretching are smaller. This tendency is just what we expect
rom simple Newtonian intuition. Particularly, the fractional change
f the stretching of the SSs is nearly a constant through the star,
hich indicates that the EoS of SSs is close to the incompressible
NRAS 509, 2758–2779 (2022) 
uid. Besides, for SSs, the fractional change ξ 0 ( r )/ r decreases
onotonically from the centre to the boundary of the star, which

s different from QSs and normal NSs. 
In the lower panel of Fig. 8 , we plot the spherical stretching

0 ( R ) versus the compactness of the star. The spherical stretching
ecreases with the increase of the compactness in the case of
 / R ≥ 0.1. Another feature is that the spherical stretching can be

maller than zero near the maximal mass for SSs. The ‘pressure
erturbation factor’ p 0 is ne gativ e and the rotation makes the star
ontract. Chandrasekhar & Miller ( 1974 ) also showed this feature for
ncompressible fluid when R / R s → 9/8, where R s is the Schwarzschild
adius (see the first three columns of table I and Fig. 3 therein). 

The baryonic mass and the gravitational mass are rotational
nvariant quantities and do not change under parity transformation
 � → −�). Thus, perturbations are only determined by the l = 0
unctions, namely h 0 , m 0 , and p 0 , and the non-rotating background
olutions. In practice, we numerically integrate m 0 and p 0 inside of
he star. Outside of the star, p 0 vanishes and m 0 is 

 0 = δM − J 2 /r 3 , (40) 

here δM is a constant and J is the angular momentum. The interior
nd the exterior solutions are matched at r = R with the match
ondition 

 m 0 ] = 4 πR 

3 ρ ( R −) ( R − 2 M) p 0 ( R) /M , (41) 

here ρ( R −) represents the energy density just inside of the star. The
unction h 0 can be obtained by algebraic relations 

 0 = −p 0 + 

1 

3 
r 2 e −νω̄ 

2 + h 0c , (inside of the star) , (42) 

 0 = − δM 

r − 2 M 

+ 

J 2 

r 3 ( r − 2 M) 
, (outside of the star) . (43) 

he constant h 0c is the value of h 0 at the centre of the star, which can
e obtained by matching the interior and exterior solutions. 
In general relativity, the mass M of a rotating relativistic star is

etermined by the spherical part of the metric g tt at large distances 

− 1 + g t t 

2 

∣∣∣
spherical part 

= −M 

r 
, r → ∞ . (44) 

ombining the metric of a slowly rotating relativistic star in equa-
ion (14) and the exterior solution of h 0 in equation (43), one obtains
he total gravitational mass 

 = M + δM , (45) 

here M is the background contribution and δM is the second-order
orrection which appears as an integration constant in the exterior
olution of h 0 and m 0 . After matching the interior and the exterior
olutions of m 0 , one obtains 

M = m 0 ( R −) + 4 πR 

3 ρ( R −)( R − 2 M) p 0 ( R) /M + J 2 /R 

3 . (46) 

he baryonic mass is a conserved quantity. Integrating the differential
orm of the baryonic mass conservation law, 

[√ −g ̄ρu 

μ
]
,μ

= 0,
t a t = const hypersurface, one obtains the baryonic mass of the
tar (Hartle 1967 ; Misner et al. 1973 ) 

¯
 = 

∫ √ −g ̄ρu 

t d 3 x . (47) 

ote that the integration extends to the whole region of the deformed
tar. To second order of �, the expansion of the baryonic mass can
e represented as M̄ = M̄ + δM̄ + O( �4 ). The baryonic mass of
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Figure 9. The first column shows the gravitational mass and the baryonic mass versus the central mass-energy density for representative EoSs LX3630 ( N q = 18), 
SQM3, and AP4. The solid lines represent non-rotating configurations. The dashed lines are the ones for rotating configurations with the angular frequency �∗. 
The gravitational mass and the baryonic mass for a smaller frequency �, where the slow rotation approximation is valid, can be easily obtained by an upward 
displacement from the solid curves by the fraction ( �/ �∗) 2 of the distance to the dashed curves (see text for more details). The second column shows the relation 
between the gravitational mass and the mean radius. The solid curves are plots of the mass M versus the radius R for non-rotating stars. The dashed curves 
represent the relation between mass M = M + δM and mean radius R̄ = R + ξ0 ( R) for rotating configurations with angular frequency �∗. The mass–radius 
relations for angular velocities that satisfies the slow rotation approximation can be obtained by multiplying the rescaling factor ( �/ �∗) 2 along a constant central 
density sequence. For comparison, we also display the relations for LX3630 ( N q = 18), SQM3 without the corrections induced by the match conditions with 
dotted lines. 
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he non-rotating star is 

¯
 = 

∫ R 

0 
4 πr 2 

(
1 − 2 m 

r 

)−1 / 2 

ρ̄d r . (48) 

he correction at the second order of � is 

M̄ = 

∫ R 

0 
4 πr 2 

(
1 − 2 m 

r 

)−1 / 2 

×
{[ m 0 

r − 2 m 

+ 

1 

3 
r 2 ω̄ 

2 e −ν( r) 
] 
ρ̄ + 

d ̄ρ

d P 

( ρ + P ) p 0 

}
d r , (49) 

hich can be represented as 

M̄ = δM̄ ( R −) + 4 πR 

3 

(
1 − 2 M 

R 

)−1 / 2 
ρ̄( R −)( R − 2 M) p 0 ( R) 

M 

, 

(50)

here we have considered the corrections from the matching condi- 
ion at the surface of the star. 

In Fig. 9 , we show the gravitational mass and the baryonic mass
t frequency �∗ for EoS LX2430 ( N q = 18), SQM3, and AP4.
he slow-rotation approximation breaks down at this frequency. But 

he mass and the radius for a given central density and a smaller
ngular frequency � can be simply obtained by multiplying the factor 
 �/ �∗) 2 . The maximal mass at the rotating frequency �∗ increases
y ∼ 20 per cent . We also plot the lines without the corrections from
he match conditions at the surface of the star. It is obvious that the
orrections are crucial and cannot be ignored. 
.2.2 Quadrupole deformations: the production of quadrupole 
oments 

he quadrupole deformation can be described by the eccentricity e ( r )
f the isodensity surface at radial coordinate r . In the upper panel of
ig. 10 , we show the fractional change of the eccentricity e ( r )/ e s at
ifferent radial coordinates inside of the star. The relations also reveal
he internal density distribution, which has the same tendencies as the
ractional change of the radial stretching in the upper panel of Fig. 8 .
he relation between the surface eccentricity e s and the compactness 
 is shown in the lower panel of Fig. 10 , where we set the angular
requency to be �∗. One can notice that the surface eccentricity
or LX2430 and SQM3 are larger than that of AP4. The difference
etween SSs and normal NSs can be as large as ∼ 20 per cent for
ome choices of the compactness. 

The quadrupole moment depends on the l = 2 perturbative 
unctions: h 2 , v 2 , p 2 , and m 2 . In practice, we integrate the differential
quations to obtain the interior solutions of h 2 and v 2 . The exterior
olutions of h 2 and v 2 are 

 2 = J 2 
(

1 
M r 3 

+ 

1 
r 4 

) + KQ 

2 
2 

(
r 
M 

− 1 
)

, (51) 

 2 = − J 2 

r 4 
+ K 

2 M 

[ r ( r −2 M )] 1 / 2 
Q 

1 
2 

(
r 
M 

− 1 
)

, (52) 

here Q 

1 
2 and Q 

2 
2 are the associated Legendre functions of the second

ind. The constant K is determined by matching the exterior and
nterior solutions at r = R with the match conditions 

 h 2 ] = 0 , [ v 2 ] = 0 . (53) 

he functions p 2 and m 2 can be obtained from the algebraic relations
Hartle & Thorne 1968 ), 

 2 = ( r − 2 m ) 
[−h 2 − 1 

3 r 
3 
(
d j 2 / d r 

)
ω̄ 

2 + 

1 
6 r 

4 j 2 (d ̄ω / d r) 2 
]

, (54) 
MNRAS 509, 2758–2779 (2022) 
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Figure 10. The upper panel shows the eccentricity e ( r ) of isodensity surface 
at radial coordinate r , normalized by the eccentricity e s at the surface of 
the star, where the mass for the non-rotating configuration is taken as M = 

1 . 4 M �. The lower panel shows the relation between the surface eccentricity 
e s and the compactness C with the angular frequency chosen to be �∗. For 
a smaller frequency � where the slow-rotation approximation is valid, the 
surface eccentricity e s can be obtained by multiplying the factor �/ �∗ for a 
fixed central density. 

p

w
 

o  

T  

a

w  

t  

e  

f  

m

Q

H  

N  

a  

c  

q  

a  

i  

d

Q

S
 

q  

q  

t  

Figure 11. The upper panel shows the relation between the surface eccen- 
tricity and the compactness for SSs with N q = 18 and N q = 9, normal NSs 
(grey), and QSs (black). This panel is the same as the lower panel of Fig. 10 
but more EoSs are included. The lower panel displays the relation between 
the dimensionless quadrupole moment and the compactness for SSs with 
N q = 18 and N q = 9, normal NSs (grey), and QSs (black). The horizontal line 
represents the dimensionless quadrupole moment of Kerr black holes, where 
Q̄ = 1. 
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 2 = −h 2 − 1 
3 r 

2 e −νω̄ 

2 , (55) 

hich come from the first integrals of the Einstein field equations. 
The quadrupole moment can be read out from the coefficient

f P 2 (cos θ )/ r 3 in the Newtonian potential (Hartle & Thorne 1968 ;
horne & Hartle 1984 ). As the radial coordinate r goes to infinite
symptotically, the quadrupole part of the Newtonian potential is 

− 1 + g t t 

2 

∣∣∣
quadrupole part 

= −Q r 

r 3 
P 2 ( cos θ ) , r → ∞ , (56) 

here Q r is the rotation-induced quadrupole moment. Calculating
he ef fecti v e potential −(1 + g tt )/2 with the e xpansion of h 2 in
quation (51) at large distance and comparing the results with the
ormal expression in equation (56), one obtains the quadrupole
oment of the star 

 r = −J 2 

M 

− 8 

5 
K M 

3 . (57) 

ere, Q r < 0 means that the star is deformed into an oblate shape.
ote that the quadrupole moments not only depend on the spin

ngular momentum of the star, but also depend on the integration
onstant K , which is related to the EoS. For black holes, the
uadrupole moment is Q r = −J 2 / M , which only depends on the
ngular momentum and the mass of the black hole. This property
s guaranteed by the no hair theorem. One usually define the
imensionless quadrupole moment 

¯
 ≡ − Q r 

M 

3 χ2 
. (58) 

imilarly, the dimensionless spin χ is defined as χ ≡ J / M 

2 . 
In Fig. 11 , we plot the surface eccentricity e s and the dimensionless

uadrupole moment Q̄ for SSs, QSs, and normal NSs. There is a
uasi-universal relation between e s and C. While the universality of
he relation between the dimensionless quadrupole moment Q̄ and
NRAS 509, 2758–2779 (2022) 
 is tighter. For NSs, the universal relation is quite different from
he ones for QSs and SSs. The Q̄ –C universal relation for normal
Ss and QSs has been disco v ered by Urbanec et al. ( 2013 ). For SSs,

he universal relation is nearly undistinguishable from that of QSs at
mall compactness. But as the compactness increases, the quadrupole
f SSs becomes larger than that of QSs. This feature also appears
n the universal relations of moment of inertia shown in Fig. 4 . The
eason is again that SSs are much stiffer than QSs at high densities. 

The quadrupole moment Q̄ and the surface eccentricity e s both
escribe the departure from spherical symmetry of the stars. There-
ore, Q̄ and e s show common features: (i) for a given compactness,
he quadrupole moment and the surface eccentricity of SSs are larger
han QSs, while the quantities of QSs are larger than that of the
ormal NSs; (ii) the quadrupole moment and the surface eccentricity
oth decrease as the compactness increases in the range we plot. The
uadrupole moment tends to be close to the limit of Kerr black holes.
or our models of SSs, this tendency is very clear and Q̄ is very close

o 1 for the stars near the maximal compactness (corresponding to
he maximal mass). So, it is hard to distinguish Kerr black holes and
otating SSs around maximal mass purely from these two quantities.

We also show the relations between the quadrupole moments and
he masses of the stars in Fig. 12 . A key feature is that the quadrupole

oments decrease with the increase of the masses for all of EoS
hat we consider. The quadrupole moments also depend on the EoS
trongly to some e xtent. F or e xample, the dimensionless quadrupole
oment Q̄ can range from ∼2 to ∼8 at 1 . 4 M � for the EoSs we

elected. Thus, The measurements of the quadrupole moments can
ive constraints on the EoS. In Figs 13 and 14 , we display the contours
f maximal mass and quadrupole moment at 1 . 4 M � for SSs with
 q = 18 and N q = 9. The constraints on quadrupole moments can be
sed to constrain the parameter space of ε and σ . 
The pulsed emission of X-rays originating from the surface of

otating NSs contains the information of the strong-filed regime
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Figure 12. The dimensionless quadrupole moment versus the mass M of 
non-rotating stars for SSs with N q = 18. The relations for N q = 9 have the 
similar trend and we ignore them for clarity of the figure. For comparison, 
the relations for normal NSs (grey) and QSs (black) are also plotted. The 
horizontal line represents the dimensionless quadrupole moment of Kerr 
black holes, where Q̄ = 1. 

Figure 13. Contours of maximal masses M max (blue) and dimensionless 
quadrupole moments with M = 1 . 4 M � (red) for N q = 18. 
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Figure 14. Same as Fig. 13 , but for N q = 9. 
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round the NSs, which can be characterized by the global properties 
hich mainly consist of mass, radius, and spin frequency. Detailed 
odelling of the emission region on the stellar surface combined 
ith the relativistic null geodesic of photons can be used to construct

heoretical light curves, which can then be compared with the 
bserv ed light curv es to probe the masses and radii, and then
onstrain the EoS of the NSs (Morsink et al. 2007 ; Watts et al.
016 ). 
Some of the targets for X-ray observations have moderate spins 
300–700 Hz (Bogdanov, Grindlay & Rybicki 2008 ). Besides the 
asses and radii, the quadrupole moments and the eccentricity 

f the stars also affect the light curves of X-rays (Morsink et al.
007 ; Baub ̈ock et al. 2013b ). Morsink et al. ( 2007 ) considered the
uadrupole moment and the shape of the NSs when modelling the X-
ay profiles. It is the so-called oblate-Schwarzschild approximation 
OS). It is found that the quadrupole moment and the eccentricity
re important in modelling the light curves, and for some emission
eometries, the deformations of the stars can ri v al the Doppler
ffects (Morsink et al. 2007 ). The main reason is that the oblate
hape will make some certain spot locations visible that would be
nvisible in the spherical cases, and vice versa. Baub ̈ock, Psaltis &
zel ( 2013a ) and Baub ̈ock et al. ( 2013b ) showed that the quadrupole
oments can also induce features with narrow peaks in the X-

ay flux and they also found that the shape parameters calculated 
ith Hartle–Thorne approximation are consistent with the numerical 

esults obtained by Morsink et al. ( 2007 ) to an accuracy of 1 per cent
or observed spin frequencies. 

On one hand, the universal relations between different quantities 
such as Q̄ and C , e s and C ) can help to decrease the dimensions of
arameter space when modelling the profiles (Baub ̈ock et al. 2013b ).
n the other hand, the difference of the universality for normal NSs,
Ss, and SSs might be used to determine whether the pulsars are
ravitationally bound or self-bound. 
Now the NICER satellite is taking data from some X-ray pulsars

nd has given certain constraints on the radii of NSs (Miller et al.
019 ; Riley et al. 2019 ) and the OS approximation is commonly used
n the modelling of X-ray profiles. In the future, the observations may
lso give constraints on the quadrupole moments and the shapes of
otating stars. 

For binary systems involving NSs, the quadrupole moments 
lso contribute to GW radiations through the quadrupole-monopole 
nteractions (Poisson 1998 ; Yagi & Yunes 2013a ; Harry & Hinderer
018 ; Isoyama, Nakano & Nakamura 2018 ). The leading-order effect
nters into the waveform at the 2 PN order, and the correction to
he GW phase is roughly proportional to ∼ Q̄ χ2 (Poisson 1998 ; 
arry & Hinderer 2018 ). Physically, it is a Newtonian effect despite

he scaling has the form of PN expansion. It may be possible to
easure or constrain the quadrupole moment with GWs. Yagi & 

unes ( 2013a ) performed GW data analysis for binary NSs and
 v aluated the possibility to constrain quadrupole moments with the
ext generation ground-based GW detector ET, and space-based 
etectors DECIGO/BBO. They found that although the quadrupole 
MNRAS 509, 2758–2779 (2022) 
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Figure 15. The moment of inertia versus central mass–energy density. The 
solid lines are the moment of inertia for non-rotating configuration. The 
dashed lines are moment of inertia with the rotation angular frequency �∗. 
The moment of inertia for a smaller frequency �, where the slow rotation 
approximation is valid, can be easily obtained by an upward displacement 
from the solid curves by the fraction ( �/ �) 2 of the distance to the dashed 
curves. We choose EoS LX3630 ( N q = 18), SQM3, and AP4 in the plot. 
The short vertical lines at the bottom of the figure represent the central mass–
energy density of non-rotating configuration with M = 1.4 M �. 

m  

s  

m  

m  

2

4
t

T  

t  

ξ  

a

δ

T  

t  

t  

t  

A
 

Q  

b  

c  

f
 

m  

w  

e  

c  

a

 

o  

t
 

c  

i  

t  

e  

b
 

c

 

o  

b  

δ  

e  

a  

1  

i  

c  

t

δ

I  

2

W  

∂  

∂  

c  

s  

H
 

t  

p

 

o  

d
 

e  

a  

c  

t

 

(  

s  

s  

e  

t  

m  

T  

m
 

f  

a  

c  

f  

M

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/2/2758/6423433 by guest on 24 N
ovem

ber 2021
oments are hard to measure due to the strong correlations with the
pins of NSs, at least one can put upper bounds on the quadrupole
oments. If the NSs in the binary systems rotate rapidly, then the
easurement of quadrupole moments is possible (Yagi & Yunes

013a ; Isoyama et al. 2018 ; Liu & Shao 2021 ). 

.3 Third order: Corrections to the angular momentum and 

he moment of inertia 

aking the integral in equation (29) and e xtending o v er the re gion
hat is interior to the isodensity surface given by R + ξ 0 ( R ) +
2 ( R ) P 2 ( θ ), one finds that only odd orders of � contribute to the
ngular momentum. At the third order of �, 

J = − 1 

6 

{
r 4 j 

d w 1 

d r 
+ r 4 j 

d ̄ω 

d r 

[
h 0 + 

m 0 

r − 2 m 

+ 

+ 

1 

5 

(
4 v 2 − 5 h 2 − m 2 

r − 2 m 

)]
+ 4 r 3 

d j 

d r 
ω̄ 

(
ξ0 − 1 

5 
ξ2 

)}∣∣∣∣
r= R + 

. 

(59) 

he moment of inertia at the second order of � is δI = δJ / �. Note
hat each term in the abo v e e xpression is e v aluated at r = R + 

and
he match conditions for m 0 , m 2 , and r 4 j d w 1 /d r at the boundary need
o be considered for SSs and QSs. The details can be found in the
ppendix A. 
In Fig. 15 , we plot the δI + I and I for representative EoSs for SSs,

Ss, and normal NSs. Note that we take the angular frequency to
e �∗. The moment of inertia for a lower frequency � at a specific
entral density can be easily obtained by multiplying the rescaling
actor ( �/ �∗) 2 . 

Under some conditions, we are interested in computing the
oment of inertia as a function of the angular velocity for a star
ith given baryonic mass (e.g. the glitch processes and the spin
 volution of ne wly born NSs). Hartle ( 1973 ) first constructed the
onstant baryonic sequence based on his early work (Hartle 1967 ),
nd the procedures are as follows: 
NRAS 509, 2758–2779 (2022) 
(i) Same as the first step in the constant density sequence, one
btains baryonic mass M̄ , gravitational mass M , and the radius of
he star R from the static and non-spinning configuration. 

(ii) The structures are calculated to the second order with the same
entral density. In order to obtain the same baryonic mass M̄ , one
mposes that the boundary value of p 0 and m 0 deviate from zero at
he centre of the star until the corrections to baryonic mass δM̄ is
qual to zero. This means that the central density is perturbed from
ackground value ρc . 
(iii) Calculate the third-order perturbations based on the boundary

onditions used in the second step. 

The central idea of Hartle’s approach is treating the change
f central density δρc as a perturbation. This assumption will
reakdown in two cases. First, when the star rotates sufficiently rapid,
ρc is actually not a small value and this procedure will produce large
rrors to other quantities (Benhar et al. 2005 ). The second breakdown
ppears when the mass of the star is close to the maximal mass (Hartle
973 ). We denote the rotational perturbation of the baryonic mass
n the constant density sequence as δM̄ ( ρc , �). Now, we want to
onstruct a rotating star with the same baryonic mass by perturbing
he central density. The variation of the baryonic mass is 

M̄ ( ρc , �) = 

∂ M̄ 

∂�

∣∣∣∣
ρc 

δ� + 

∂ M̄ 

∂ρc 

∣∣∣∣
�

δρc = 0 . (60) 

t follows that for a given baryonic mass (Hartle 1973 ; Benhar et al.
005 ) 

∂ρc 

∂�

∣∣∣∣
M̄ 

= −
(

∂ M̄ 

∂�

∣∣∣∣
ρc 

)/(
∂ M̄ 

∂ρc 

∣∣∣∣
�

)
. (61) 

hen the sequence is close to the maximal mass, the term
 M̄ /∂ρc | � → 0. Consequently, the change of the central density
ρc /∂�| M̄ 

→ ∞ , which violates the assumption that the change of
entral density is a small correction and this approach fails. The
olutions become unstable near the maximal masses as shown in
artle ( 1973 ). 
Benhar et al. ( 2005 ) formulated another procedure to obtain

he constant baryonic mass sequence based on Hartle ( 1973 ). The
rocedure is as follows: 

(i) Same as the first step in the Hartle’s constant density sequence,
ne can obtain a baryonic mass M̄ for an assigned EoS and central
ensity ρc . 
(ii) Choosing an angular velocity � and integrating the perturbed

quations to the third order of � for various values of ρc , one can get
 branch of solutions with the same angular velocity � but different
entral densities. Among these solutions, one chooses the one with
he same baryonic mass M̄ as the unperturbed one. 

This approach is stable around the maximal mass. Benhar et al.
 2005 ) compared this perturbative approach with the exact numerical
olutions and found that this algorithm is better than Hartle’s in high
pin frequencies. Although this approach will also produce large
rrors around the maximal mass due to the fact ∂ M̄ / ∂ρc | � → 0 at
he maximal mass, but the solutions are at least stable and can give

ore accurate results for large spins compared to Hartle’s approach.
herefore, we take this approach to construct the constant baryonic
ass sequence in our calculations. 
In Fig. 16 , we plot the moment of inertia versus the rotating

requencies for the constant central density sequence ( upper panel )
nd the constant baryonic mass sequence ( lower panel ). The constant
entral density sequence can be represented as simple quadratic
unctions directly. For low spin, the correction to the moment of
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Figure 16. The upper panel shows the relation between the moment of inertia 
and spin frequency for constant central density sequence. We take the central 
mass–energy to be 7 . 67 × 10 14 g cm 

−3 , which corresponds to M = 1.4M �
for the EoS LX3630 ( N q = 18). The solid lines are the moment of inertia 
for rotating stars I + δI , while the dashed lines represent the moment of 
inertia for non-rotating configuration I . The lower panel shows the moment 
of inertia in the constant baryonic mass sequence. We take the baryonic mass 
as 1 . 67 M �, which corresponds to the gravitational mass M = 1 . 4 M � for 
the EoS LX3630 ( N q = 18). The solid lines represent I + δI while the dashed 
lines represent I . The vertical line at 716 Hz represents the observed fastest 
rotating pulsar, PSR J1748 − 2446ad. 

Table 1. The relative error δI /( I + δI ) for EoSs LX3630 ( N q = 18), SQM3, 
and AP4 in different rotating frequencies. 

Relative errors δI/ ( I + δI ) ( per cent ) 
Frequency (Hz) LX3630 SQM3 AP4 

100 0 .197 0 .191 0 .149 
200 0 .792 0 .755 0 .577 
300 1 .77 1 .67 1 .28 
400 3 .08 2 .91 2 .26 
500 4 .68 4 .41 3 .47 
600 6 .50 6 .13 4 .91 
700 8 .48 8 .01 6 .54 
800 10 .6 10 .0 8 .34 
900 12 .7 12 .0 10 .3 
1000 15 .0 14 .0 12 .3 
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nertia is very tiny. In the case of PSR J0737 − 3039A, the rotating
requency is ∼ 45 . 5 Hz and the second-order contribution can be
gnored in the discussions of Lense–Thirring precession. But the 
orrections become obvious as the star rotates sufficiently fast. 
 or e xample, for PSR J1748 − 2446ad, the fastest spinning pulsar
bserved with the frequency 716 Hz, the relative error δI /( I + δI ) one
akes by neglecting the contribution δI at order �2 are 8 . 8 per cent

or LX3630 ( N q = 18), 8 . 3 per cent for SQM3, and 6 . 8 per cent
or AP4. In Table 1 , we present the relative errors for the constant
aryonic mass sequence shown in the lower panel of Fig. 16 at
ifferent rotating frequencies. The relative errors for LX3630 and 
QM3 are larger than AP4, which results from the fact that SSs and
Ss are more compact than hadronic NSs. 
 TI DAL  D E F O R M AT I O N  A N D  TI DA L  L OV E  

U M B E R S  

or tidally-deformed relativistic stars, the metric g tt in the star’s local
symptotical rest frame can be represented via (Flanagan & Hinderer 
008 ; Hinderer 2008 ) 

− ( 1 + g t t ) 

2 
= −M 

r 
− 3 Q ij 

2 r 3 

(
n i n j − 1 

3 
δij 

)
+ O 

(
1 

r 4 

)

+ 

1 

2 
E ij x i x j + O 

(
r 3 
)

, (62) 

here E ij is the tidal field generated by the companion of the star, and
 ij is the quadrupole moment of the NS induced by the tidal field.
o characterize the deformations of the stars, one usually defines the

idal deformability as 

≡ −Q ij / E ij , (63) 

hich measures the ability to be deformed by the tidal field and
epends on the EoS. It is related to the l = 2 Lo v e number k 2 via
 2 = 3 λR 

−5 /2. 
To calculate the metric in equation (62) and give the tidal

eformability λ, one introduces a l = 2 even parity and static
erturbation on the spherical background. The metric perturbation 
n the Regge–Wheeler gauge (Regge & Wheeler 1957 ) can be
epresented as (Thorne & Campolattaro 1967 ) 

 

(2 m ) 
μν = Y 2 m 

( θ, φ) 

⎡ 

⎢ ⎢ ⎣ 

−e νH 0 H 1 0 0 
H 1 e λH 2 0 0 
0 0 ρ2 K 0 
0 0 0 ρ2 sin 2 θK 

⎤ 

⎥ ⎥ ⎦ 

, (64) 

here Y lm ( θ , φ) are the spherical harmonics and H 0 , H 1 , H 2 , and
 are functions that only depend on r . Correspondingly, the matter
erturbations are 

T 0 0 = −δρ( r) Y 20 ( θ, φ) , δT i i = δP ( r) Y 20 ( θ, ϕ) . (65) 

ubstituting δP into δρ d P / d ρ and solving the linearized Einstein
quations, δG 

β
α = 8 πT βα , one obtains (Hinderer 2008 ; Damour &

agar 2009 ) 

 0 = −H 2 = H , H 1 = 0 , K 

′ = −H 

′ − H ν ′ , (66) 

here the prime denotes the deri v ati ve respect to r . The ordinary
ifferential equations of H ( r ) and α( r ) ≡ H 

′ 
( r ) are 

d H 

d r 
= α( r) , (67) 

d α

d r 
= −α( r ) 

{
2 

r 
+ e λ

[
2 m ( r ) 

r 2 
+ 4 πr ( P − ρ) 

]}

−H 

[
−6 e λ

r 2 
+ 4 πe λ

(
5 ρ + 9 P + 

ρ + P 

d P / d ρ

)
− ν ′ 2 

]
. (68) 

ne integrates the differential equations of H ( r ) and α( r ) to the
urface of the star R with the boundary conditions H ( r ) = ar 2 and
( r ) = 2 ar as r → 0. Here a is a constant that can be chosen arbitrarily
nd will be cancelled in the calculations of the Lo v e numbers. F or
Ss and SSs, the term d P /d ρ in the differential equation of α is not

ontinuous across the surface of the star, just like the case in the slow
otation. Thus, the match conditions of H ( r ) and α( r ) at the radius R
s 

 H ] = 0 , [ α] = [ H 

′ ] = −4 πr 2 H ( R −) ρ( R −) /M . (69) 

he exterior solution of H can be solved analytically (Thorne &
ampolattaro 1967 ; Hinderer 2008 ) 

 = c 1 Q 

2 
2 

( r 

M 

− 1 
)

+ c 2 P 

2 
2 

( r 

M 

− 1 
)

, (70) 
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Figure 17. Dimensionless tidal deformability � as a function of the mass M 

for SSs ( N q = 18), QSs (black dashed lines), and normal NSs (grey dashed 
lines). For SSs with N q = 9, the trend of � is basically the same as N q = 18, 
and we do not show them here for clarity. 
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here c 1 and c 2 are constants. The function P 

2 
2 is the associated

egendre function of the first kind and P 

2 
2 ( r/M − 1) ∼ r 2 at large

 , while the function Q 

2 
2 is the associated Legendre function of the

econd kind and Q 

2 
2 ( r/M − 1) ∼ r −3 at large r . Taking the expansion

f H ( r ) at large r and comparing with the multipole moments defined
n equation (62), one obtains 

= 

8 M 

5 

45 

c 1 

c 2 
, k 2 = 

3 

2 
λR 

−5 = 

4 C 5 
15 

c 1 

c 2 
. (71) 

ne matches the solutions of H ( r ) and α( r ) at the surface of the star
nd gives the solutions of c 1 / c 2 in terms of the interior solution at r =
 . Then the tidal Lo v e number k 2 can be obtained (Hinderer 2008 ) 

 2 = 

8 C 5 
5 

(1 − 2 C) 2 [2 + 2 C( y − 1) − y] 

×
{ 

2 C[6 − 3 y + 3 C(5 y − 8)] 

+ 4 C 3 
[
13 − 11 y + C(3 y − 2) + 2 C 2 (1 + y) 

]
+ 3(1 − 2 C) 2 [2 − y + 2 C( y − 1)] ln (1 − 2 C) 

} −1 
, (72) 

here y ≡ R α( R )/ H ( R ). For QSs or SSs, one needs to take into account
he match conditions in equation (69), and y ( R ) can be represented
s 

( R ) = 

R α( R −) 

H ( R −) 
− 4 πR 

3 ρ( R −) 

M 

. (73) 

he second term contributes crucially to the tidal Lo v e numbers
f QSs or SSs and cannot be ignored. The tidal deformability can
e calculated with the relation λ = 2 k 2 R 

5 /3. For later analysis of
W constraints, we will concentrate on the dimensionless tidal
eformability 

 = 

2 k 2 
3 C 5 . (74) 

In Fig. 17 , we display the relation between the dimensionless
idal deformabilities and the masses for SSs, QSs, and normal NSs.
or the mass range we plot, a common feature is that � decreases
ith the increase of the mass because the star becomes more and
ore compact and harder to be deformed. For SSs, as the potential

epth ε increases and the surface baryonic density n s decreases,
NRAS 509, 2758–2779 (2022) 
he EoS becomes stiffer, which leads to larger maximal masses
nd tidal deformabilities. Compared to normal NSs and QSs, SSs
re very compact near the maximal masses and the dimensionless
idal deformabilities can extend to the value smaller than one. For
chwarzschild black holes, the tidal deformabilities are zero since
 − 2 C in equation (72) becomes zero. This feature is guaranteed by
he no hair theorem (Damour & Nagar 2009 ). 

One can notice that tidal deformability is proportional to the fifth
ower of the radius R . Therefore, constraining or measuring tidal
eformability of NSs can provide important information on the EoS
f NSs. Actually, the tidal deformations of NSs have imprints on the
Ws from binary NSs. At the early stage of inspiral, the dynamical
otion can be treated as point particles. But once the binary system

volves to the late stage of inspiral, the finite size effects induced
y the tidal interactions will affect the motions of binary system
nd contribute to the GW emission (Flanagan & Hinderer 2008 ).
he tidal contributions to the evolution of GW phases first enter at
 PN. It is actually a Newtonian term in spite of scaling with PN
rder. Since the energy goes to deform the star and the induced
uadrupole moments will contribute to the GW radiation, the phase
volution will be faster than non-spinning point particles with the
ame mass (Dietrich et al. 2021 ). The phase corrections depend
n a parameter ˜ � , which is a mass-weighted linear combination
f the dimensionless tidal deformabilities of two stars (Flanagan &
inderer 2008 ) 

˜ 
 = 

16 

13 

( m 1 + 12 m 2 ) m 

4 
1 � 1 + ( m 2 + 12 m 1 ) m 

4 
2 � 2 

( m 1 + m 2 ) 
5 , (75) 

here m 1, 2 and � 1, 2 represent the masses and the tidal deformabili-
ies of the binary components respectively. 

The GWs from the binary NS inspiral, GW170817, give the
onstraints on the tidal deformabilities for the first time (Abbott
t al. 2017 , 2018 , 2019 ). In the disco v ery paper, Abbott et al.
 2017 ) placed a 90 per cent upper limit of ˜ � ≤ 800 for low spin
rior. With a linear expansion of � ( m ) at fiducial mass 1 . 4 M �,
hey also gave � (1.4M �) ≤ 800. In a following paper, Abbott et al.
 2019 ) extended the range of the GW frequencies from 30 Hz in the
nitial analysis (Abbott et al. 2017 ) down to 23 Hz. Besides, several
ophisticated and more accurate waveform models augmented with
ther physical effects (such as spins) are used to do data analysis.
nder minimal assumptions about the nature of the compact objects,
bbott et al. ( 2019 ) constrained the tidal deformability ˜ � in the

ange ˜ � ∈ (0 , 630) for a high spin prior and ˜ � ∈ (70 , 720) for a low
pin prior. Abbott et al. ( 2018 ) complemented the study of Abbott
t al. ( 2019 ) with the assumptions that GW170817 comes from the
nspiral of a binary NS whose masses and spins are consistent with
he galactic binaries. They concluded that the tidal deformability for
 1 . 4 M � NS is in the range ˜ � ∈ (70 , 580) at a 90 per cent incredible
ev el. F or QSs, Miao et al. ( 2021 ) used GW170817 data and gave a
ystematic study with Bayesian inference. 

In Fig. 18 , we take the posterior in Abbott et al. ( 2019 ) and plot
he 90 per cent credible lines for the low spin case. This posterior
ses minimal assumptions on the nature of the compact objects. The
idal deformabilities for several SSs with N q = 18 and N q = 9 are
resented. For comparison, we also show some selected models of
ormal NSs and QSs. The constraints rule out several stiff normal
oSs (MS0, H4) and models of SSs with very low surface baryonic
ensities (LX2430, LX2450) at a 90 per cent credible level. Recall
hat the surface baryonic density is inversely proportional to the cubic
f σ . Thus the constraints indicate that the repulsive core cannot
xtend too large. 
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Figure 18. Posterior of tidal deformabilities (green lines) for the binary 
NS in GW170817 with restricted low spins. The data of the posterior is 
taken from Abbott et al. ( 2019 ). The green line indicates the enclosure of 
the 90 per cent credible regions of ˜ � , 300 + 420 

−230 . The primary mass m 1 ∈ 

(1 . 36 , 1 . 60) M � and the secondary mass m 2 ∈ (1 . 16 , 1 . 36) M �. The tidal 
deformability for SSs with N q = 18 and N q = 9 are displayed. For comparison, 
we also plot the tidal deformabilities for AP4, H4, MS0, and SQM3. The 
shaded region is � 1 > � 2 . 

Figure 19. Contour lines of � (1.4M �) (red) and maximal mass (blue) for 
N q = 18. 
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Figure 20. Same as Fig. 19 , but for N q = 9. 
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Using the posterior of tidal deformabilities in Abbott et al. ( 2017 ),
ai et al. ( 2019 ) constrained the parameter space of the potential
epth ε and surface baryonic density n s for SSs with N q = 18.
ased on their work, we plot the contours for tidal deformabilities 
nd maximal masses for N q = 18 and N q = 9 in Figs 19 and 20 ,
espectively. If we take the conservative constraint � (1.4M �) ≤ 800 
n the initial work (Abbott et al. 2017 ), the maximal mass at least
hould be less than 4 . 2 M � in the parameter space we choose. 
 I -LOVE-Q  U N I V E R S A L  R E L AT I O N S  

agi & Yunes ( 2013a , b ) found remarkable EoS-insensitive universal
elations between the dimensionless moment of inertia Ī = I /M 

3 ,
uadrupole moment Q̄ , and the tidal deformability � , which is the
o-called I-Lo v e-Q univ ersal relations. The relativ e errors of the
nalytical fits (Yagi & Yunes 2013a , 2017 ) connecting any of two
uantities in the I-Lo v e-Q relations hold to 1 per cent for a variety
f EoSs, including models for normal NSs and QSs. 
The I-Lo v e-Q relations are useful in man y aspects. F or e xample,

f one obtains the moment of inertia from the aforementioned pulsar
iming technique, then an accurate estimation of the rotational 
uadrupole moment Q̄ can be made. The eccentricity, quadrupole 
oment, and moment of inertia affect the modelling of the X-ray

rofiles of pulsars (Morsink et al. 2007 ; Baub ̈ock et al. 2013a , b ; Gao
t al. 2020 ). The finite size effects from rotation and tidal interactions
ill contribute to the continuous GW emission (Hinderer 2008 ; 
agi & Yunes 2013a ; Harry & Hinderer 2018 ; Dietrich et al. 2021 ).
herefore, the I-Lo v e-Q relations can be used to break degeneracies
etween some parameters in the modelling of X-ray profiles and 
aveform of GWs (Yagi & Yunes 2013a , 2017 ; Baub ̈ock et al.
013b ; Silva & Yunes 2018 ). In this way, the parameter space can be
educed and other parameters in the modelling can be obtained more
ccurately (Baub ̈ock et al. 2013b ; Yagi & Yunes 2017 ). 

So far, we have calculated static, slowly rotating, and tidally 
eformed SSs. Compared to other kinds of EoSs, SSs in the Lennard–
ones model admits d P /d ρ > 1 with the causality still being satisfied.
herefore, it is worthwhile to see whether the I-Lo v e-Q univ ersal

elations still hold for SSs. Yagi & Yunes ( 2013a , 2017 ) showed that
he I-Lo v e-Q relations can be fitted by fifth-order polynomials in the
orm 

ln y i = 

4 ∑ 

k= 0 

c k ( ln x i ) 
k , (76) 

ith great accuracy. Here, y i and x i are any two quantities in Ī , Q̄ , and
 , and c k are fitting coefficients. In the first row of Fig. 21 , we show

he fitting curves with the fitting constants c k given in Yagi & Yunes
 2017 ). In the second row, we show the relative errors between the
tting values and the numerical data. For SS, the relative errors are
MNRAS 509, 2758–2779 (2022) 
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Figure 21. The EoS-insensiti ve uni versal relations between dimensionless quantities Ī , Q̄ , and � . The quantities are normalized via Ī ≡ I/M 

3 , Q̄ ≡
−Q r / ( M 

3 χ2 ), and � ≡ λ/ M 

5 . Here, M is the mass of the non-rotating configuration, χ = J / M 

2 is the dimensionless spin, and J is the angular momentum in 
the first order of �. In the first ro w, we sho w the fitting curves of I-Lo v e-Q relations taken from Yagi & Yunes ( 2017 ). In the second row, we show the relative 
errors between the fitting values and the numerical data for SSs and normal NSs. 

Figure 22. The eccentricity e ( r ) at a given isodensity surface inside of the 
SSs divided by the eccentricity at the star’s surface e s . Here, we choose 
M = 1 . 4 M � and relations for N q = 18 and N q = 9 are displayed. 
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maller than 1 per cent for SSs in the most regions of the parameter
pace. Some departures occur in the Ī –Q̄ and Q̄ –� relations, but
he relative errors are still in the order of 1 per cent . We come to the
onclusion that the I-Lo v e-Q relations still hold despite d P /d ρ > 1. 

Another interesting feature is that the relative errors of SSs are
early the same for the EoS models that we choose. An instinctive
eason is that the EoS models come from the same form of
athematical equations (the Lennard–Jones model). We can further

nderstand this feature (at least for the Ī –Q̄ relation) with the
ccentricities of those stars. After the disco v ery of the I-Lo v e-Q
elations, Yagi et al. ( 2014 ) explored the reason why this universality
ccurs. They suggested that the universality results from an emergent
pproximate symmetry. With the increase of the compactness, the
ariation of the eccentricity defined in equation (37) inside stars
ecreases, which leads to a self-similarity of the isodensity surface
nside of the stars. This self-similarity indicates some common matter
istributions, therefore the universal behaviour occurs for the exterior
ultipole moments. Moti v ated by this argument, In Fig. 22 , we

lot the eccentricities inside of the stars e ( r ) divided by the surface
ccentricity e s for different choices of parameters. We can notice that
NRAS 509, 2758–2779 (2022) 
he variations of eccentricities at given radial coordinate are very
arrow for the selected models, about 1.8–3 . 8 per cent . The values
nd the range of the variations of eccentricities are much smaller
han that of different normal NSs used in the analysis of Yagi et al.
 2014 ). Therefore, if we use this scenario of how the universality
ccurs, the features with nearly the same relative errors for SSs can
e understood, at least for the Ī –Q̄ relation. 
In abo v e discussions, we only consider slow rotation. For rapidly

otating NSs, Done v a et al. ( 2013 ) extended the computation of the Ī –
¯
 relation to the mass shedding limit and found that the universality

s lost. Chakrabarti et al. ( 2014 ) disco v ered that it is still universal
mong various EoSs if one uses some dimensionless parameters to
haracterize the magnitude of rotation. More interestingly, one of the
arameters involves the radius of NSs and a new universal relation
xpressing the radius with mass and spin parameter was found, which
an be used as a powerful tool for radius measurement. Pappas &
postolatos ( 2014 ) disco v ered that the first four multipoles of NSs

re related in a way that is independent of the EoS of NSs, which
et us describe the geometry around NSs with only a few parameters
uite accurately. Because of the ultracompact nature, the universal
elations and space-time geometry of rapidly rotating SSs may give
s more valuable information. We leave them to future study. 

 DI SCUSSI ONS  A N D  C O N C L U S I O N S  

ulk strong matter at several times of nuclear densities may restore
he three-light-fla v our symmetry (Xu 2003 , 2018 ). At this energy
evel, the quarks may not be deconfined and form quark clusters,
hich we call strangeons. The residual strong interactions can trap

he strangeons in the potential well and the whole star is in a solid
tate. Therefore, we conjecture that the pulsar-like compact objects
ould be actually SSs rather than NSs or QSs. We use the Lennard-
ones model, which is parametrized by the potential depth ε and
he surface baryonic density n s , to describe the EoS of SSs. Though
imple, it provides a powerful physically motivated framework to
tudy strangeon stars, complementing the parametrization usually
een for NSs (Read et al. 2009 ). In the Lennard-Jones model, the
oS is very stiff due to the non-relativistic nature of the particles
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nd the strong repulsive force between the strangeons in the short
istance. The astronomical observations may give certain constraints 
n the parameters and even verify or falsify the existence of SSs.
hus, we calculate the static, slowly rotating, and tidally deformed 
Ss in details and briefly discuss some existing and possible future 
bservations that can constrain the EoS of SSs. The results in this
ork are ready to be used in various scenarios. 
In the calculations of the static and non-spinning background, 

ll the parameter space in our model can produce maximal mass
 max larger than 2 . 5 M �. In our model, ultracompact stars near the
aximal mass can invade into the region d P /d ρ > 1 with the causality

imit still being satisfied. We also compared the structures of SSs
ith the analytical T olman IV and T olman VII solutions discussed

n Tolman ( 1939 ), Lattimer & Prakash ( 2005 ), and Lattimer ( 2012 ).
e found that the SSs can possess maximal mass larger than the ones

iven by Tolman VII solution but is still lower than that of Tolman
V solution. If pulsar-like compact stars are SSs, a much long-lived 
tar will form in the remnant of the GW170817 event (Lai et al.
019 ). A stiffer EoS predicts smaller central mass-energy density at 
aximal mass. If future observations of the shapiro time delay with 

ulsar timing technique and post-merger signals from binary mergers 
upport the existence of massive pulsar-like compact objects with 
ass larger than 2 . 5 M �, the phase transition from hadrons to free

uarks may not happen and the existence of SSs is fa v oured. 
For slowly rotating SSs, we calculated the structures to the third

rder of angular frequency �. In the first order, the star remains to
e spherical and the local inertial frame is dragged. We calculated 
he angular momentum J and the moment of inertia I of SSs and
ome representative models of normal NSs and QSs. Based on the 
ork of Lattimer & Prakash ( 2001 ) and Bejger & Haensel ( 2002 ),
e studied the universal relations between the moment of inertia 

nd the compactness of the star. At low compactness, this universal 
elation for SSs is basically the same as QSs. But as the compactness
ecomes larger, EoS of QSs becomes soft while SSs are still very
tif f. The uni versal relation will de viate from QSs and the moment of
nertia is al w ays close to the limit set by the incompressible fluid. The
rame dragging effect will induce Lense–Thirring precession in the 
ouble pulsar system PSR J0737 − 3039A/B. The periastron advance 
ue to the spin–orbit coupling may be detectable in the upcoming 
ears with the SKA (Hu et al. 2020 ). A 10 per cent precision of the
oment-of-inertia measurement can give informative constraints on 

he parameter space of ε and n s in our model. 
To the order �2 , the star is deformed. On the spherical part, we

alculated the spherical stretching and the change in gravitational 
ass and the baryonic mass. Differently from NSs, SSs have a 

ard surface with finite density. The match conditions at the surface 
f star cannot be ignored and the corrections must be crucially 
onsidered. On the quadrupole part, we calculated the quadrupole 
oments, eccentricities of isodensity surface, and investigated the 

niversal relation between the dimensionless quadrupole moments 
nd compactness discussed by Urbanec et al. ( 2013 ). We found
imilar features shown in the relations between the moment of inertia 
nd the compactness. At large compactness, the relations for SSs 
eviate from QSs. We also find quasi-universal relations between the 
urface eccentricity and the compactness for SSs, QSs, and normal 
Ss. The relations basically have the same features as the relations 
etween the quadrupole moments and the compactness. We also 
ound that the eccentricity and the compactness for SSs and QSs
atisfy quasi-universal relations, which are distinct from the relation 
or normal NSs shown in Baub ̈ock et al. ( 2013b ). 

To the third order of �, we studied the corrections to the angular
omentum and the moment of inertia for the constant central density 
equence and the constant baryonic mass sequence. We found that for
oderate spins, the corrections of moment of inertia δI are very small

ompared to the zeroth-order contribution I . But for rapidly rotating
tars, the corrections can be up to ∼ 10 per cent for the EoSs we
onsidered. For rapidly rotating NSs, Benhar et al. ( 2005 ) found
hat the relative errors of the perturbative approach compared to the
esults calculated from numerical relativity can be reduced largely if 
he third-order contributions are considered. This conclusion could 
lso be used for SSs. Our calculations may be useful to study the
pin evolutions of newly born SSs or glitch processes in pulsars. 

For the tidally deformed SSs, we calculated the tidal deformabil- 
ties with the appropriate match conditions at the surface of the
tars. We used the posterior of GW170817 to give a constraint
n the parameter space of ε and n s . If we take the constraint
f � (1 . 4 M �) ≤ 800 (Abbott et al. 2017 ), we then come to the
onclusion that the maximal mass cannot be larger than ∼ 4 . 2 M �
oth for N q = 18 and N q = 9. In the future, smaller values of
 (1.4M �) are expected. 
Based on the calculations of slow rotation and tidal deformation, 

e studied the I-Lo v e-Q univ ersal relations (Yagi & Yunes 2013a , b ).
he universal relations still hold although d P /d ρ > 1. We also
iscussed the nearly the same relative errors compared to the fitting
ormula given in Yagi et al. ( 2014 ) especially for the Ī –Q̄ relation.
he I-Lo v e-Q relations and other universal relations such as the I –C 
nd Q̄ –C relations can be used to study the GWs from the binaries
nd the modelling of X-ray profiles. 

A main concern of our calculations is that we take the perfect fluid
ssumption to calculate the perturbations but SSs are actually in a
olid state. The key parameter for the calculations of the perturbations
or solid components is the shear modulus μ. For NSs, the structure
an be roughly divided into a superdense fluid core and a solid
rust. The interactions in the crust are dominated by electromagnetic 
orce and the mean shear modulus in the crust is about μ � 4 ×
0 29 erg cm 

−3 (Ushomirsky, Cutler & Bildsten 2000 ; Owen 2005 ).
enner et al. ( 2011 ) developed a framework to study the tidal response
f NSs with solid crusts. They found that the elasticity of the solid
rust provides a small correction to the tidal deformability . Recently ,
ittins, Andersson & Pereira ( 2020 ) presented detailed formalism 

hat describes the static perturbations on the relativistic NSs with 
olid crust and corrected some inconsistencies in Penner et al. ( 2011 ).
he results show that the inclusion of the solid crust has a negligible
ffect on the tidal deformability of an NS, in the range of ∼10 −8 –
0 −7 . 
Ho we ver, in our model, the interactions between strangeons are

ominated by strong force. The detailed calculations of the shear 
odulus is still not performed, but it should be much larger than

hat of the NS’s crust. If the burst oscillation frequencies observed
n low-mass X-ray binaries correspond to the first few torsional 
odes of SSs, the shear modulus should be about one thousand

imes of the NS’s crust, say μ � 4 × 10 32 erg cm 

−3 (Xu 2003 ; Owen
005 ). We do not know how large the tidal deformability will deviate
rom the fluid case for SSs, but we can obtain some key insights
f this problem from the calculations of tidal deformabilities for 
rystalline colour superconducting phase (Lau, Leung & Lin 2017 , 
019 ). QSs composed of crystalline colour superconducting phase 
re rigid with extremely high shear modulus (Alford, Bowers & 

ajagopal 2001 ; Mannarelli, Rajagopal & Sharma 2007 ). The shear
odulus is approximately given by (Mannarelli et al. 2007 ) 

= 2 . 47 MeV / fm 

3 

(
� 

10 MeV 

)2 ( μq 

400 MeV 

)2 
, (77) 
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here μq is the average quark chemical potential and � is the gap
arameter which is in the range of 5–25 MeV. If the shear modulus
s taken to be μ = 4 × 10 32 erg cm 

−3 ( � � 5 MeV), according to
he results in Lau et al. ( 2017 , 2019 ), the deviations of the tidal
eformabilities from the fluid case are in the order of 1 per cent . For
arger gap parameters, the deviations can be very large and more
nterestingly, they found that the universal relations between the
oment of inertia and tidal deformability will deviate from the ones

or fluid stars. If we take the shear modulus to be about μ � 4 ×
0 32 erg cm 

−3 , the corrections may not be very large and the results
iscussed in our work is a good approximation. But if the shear
odulus is actually larger, then we need to consider the corrections

ue to the elasticity. 
For the slow rotation approximation, Carter & Quintana ( 1975 )

eveloped Hartle–Thorne approximation and gave the method to
onstruct an elastic rotational solid star based on the elastic per-
urbation theory in general relativity (Carter 1973 ; Andersson &
omer 2021 ). To the first order of �, the star remains to be spherical
nd Quintana ( 1976 ) found that the moment of inertia is the same
s that of fluid case. For higher order perturbations, the star will be
eformed and one needs to consider the effects of solid state. The
eviations to the fluid cases are also determined by the value of shear
odulus, which may have the same order of effects as the tidal.
nyway, we ignore the solid aspects, namely the shear modulus, of

he stars in this study. In future, we will present the calculations of the
hear modulus and use the elastic perturbations in general relativity
o study the structures of SSs. 

The nature of the supra-nuclear matter in compact stars closely
elates to the non-perturbative QCD at low energy levels, which
till remains to be an unsolved important problem in physics. The
roposed SSs perceive pulsar-like compact objects as solid stars
omposed of strangeons. We give a study on the structures of rotating
nd tidally deformed SSs within a perturbative approach. So far, the
Ss have passed many tests. The future observations of X-rays, radio
ignals, and GWs will give us more information on the SSs and the
ulk of strong matter at low energy scales. 
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PPENDI X  A :  O R D I NA RY  DI FFERENTI AL  

QUA  T I O N S  RELA  TED  TO  SLOW LY  ROTA  TING  

ELATIVISTIC  STARS  

he metric for slowly rotating relativistic star to the third order of �
an be represented as 

 s 2 = 

{−e ν( r) 
[
1 + 2 

(
h 0 + h 2 P 2 ( cos θ ) 

)]+ r 2 ω 

2 sin 2 θ
}

d t 2 

+ e λ( r) 
[
1 + 2 

(
m 0 + m 2 P 2 ( cos θ ) 

)
/ 
(
r − 2 m 

)]
d r 2 

+ r 2 [ 1 + 2( v 2 − h 2 ) P 2 ( cos θ ) ] 
(
d θ2 + sin 2 θd φ2 

)

−2 r 2 sin 2 θ

[
ω + w 1 − 1 

sin θ

d P 3 ( cos θ ) 

d θ
w 3 

]
d φd t 

−4 r 2 sin 2 θP 2 ( cos θ ) 
(
v 2 − h 2 

)
ωd φd t . (A1) 

ombining this metric with the stress-energy tensor in equation (26) 
nd applying the linearized Einstein equations, a systematic ordinary 
ifferential equations which determine the stars’ structures can then 
e obtained. 
In the following, we will give these differential equations, the 

oundary conditions at the centre of the star, and the match conditions 
etween the interior and the exterior solutions order by order. Most of
he equations can be found in Hartle ( 1967 , 1973 ), Hartle & Thorne
 1968 ), Chandrasekhar & Miller ( 1974 ), Benhar et al. ( 2005 ), and
rbanec et al. ( 2013 ). Note that some typos in the original work

Hartle 1967 ) have been corrected. 

1 The first order 

o the first order of �, the star remains to be spherical and only
he spacetime is dragged due to the rotation of the star. The fluid

otion is not determined by the angular velocity � relative to a
istant observer but by the angular velocity ω̄ with respect to the
ocal inertial frame, which is defined as 

¯  = � − ω . (A2) 

his quantity satisfies the differential equation 

1 

r 4 

d 

d r 

(
r 4 j 

d ̄ω 

d r 

)
+ 

4 

r 

d j 

d r 
ω̄ = 0 , (A3) 

here j = e −( ν + λ)/2 . In practice, we follow Sumiyoshi, Ib ́a ̃ nez &
omero ( 1999 ) and Benhar et al. ( 2005 ) and introduce two variables 

= j ̄ω , u = r 4 j 
d ̄ω 

d r 
, (A4) 

hich satisfy 

d ξ

d r 
= 

u 

r 4 
− 4 πr 2 ( ρ + P ) ξ

r − 2 m 

, 
d u 

d r 
= 

16 πr 5 ( ρ + P ) ξ

r − 2 m 

, (A5) 

n the interior of the star. The boundary conditions of ξ and u at the
entre of the star are 

(0) = j c ̄ω c , u (0) = 0 , (A6) 

here j c and ω̄ c are the values of j and ω̄ at the centre of the star.
ntegrating equation (A5) with the boundary conditions at the centre 
f the star, one obtains the interior solutions. Outside of the star, the
tress-energy tensor T αβ vanishes and the solutions of equation (A5) 
re 

( r) = � − 2 J 

r 3 
, u ( r) = 6 J , (A7) 
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here J is the angular momentum of the star. Taking the matching
onditions at the surface of the star 

 ξ ] = 0 , [ u ] = 0 , (A8) 

he angular momentum J , angular velocity �, and the moment of
nertia I can be represented as 

 = u ( R) / 6 , � = ξ ( R) + 

2 J 

R 

3 
, I ≡ J /� . (A9) 

2 The second order 

o the order �2 , the stars will be deformed and the perturbations
an be divided into l = 0 and l = 2 parts in the spherical harmonics
xpansions, which correspond to spherical stretching and quadrupole
eformations, respectively. The isodensity surface at radial coordi-
ate r in the non-rotating configuration is displaced to 

 + ξ0 ( r) + ξ2 ( r) P 2 ( cos θ ) , (A10) 

n the rotating configuration. The displacement functions ξ 0 and ξ 2 

an be represented as 

0 ( r) = −p 0 ( ρ + P ) / (d P / d r ) , ξ2 ( r ) = −p 2 ( ρ + P ) / (d P / d r) , 

(A11) 

here p 0 and p 2 are related to the metric perturbation via 

 0 = −h 0 + 

r 3 ξ2 

3( r−2 m ) + h 0c , (A12) 

 2 = −h 2 − r 3 ξ2 

3( r−2 m ) , (A13) 

here h 0c is a constant. The abo v e two equations can also be treated
s the definitions of p 0 and p 2 . 

2.1 Spherical part 

he spherical part of the perturbations can be obtained by integrating
he differential equations of the ‘mass perturbation factor’ m 0 and
he ‘pressure perturbation factor’ p 0 

d m 0 

d r 
= 

u 2 

12 r 4 
+ 

8 πr 5 ( ρ+ P ) ξ2 

3( r−2 m ) + 4 πr 2 ( ρ + P ) d ρd P p 0 , (A14) 

d p 0 

d r 
= 

u 

2 

12 r 4 ( r − 2 m ) 
+ 

2 r 2 ξ

3( r − 2 m ) 

[
u 

r 3 
+ 

r − 3 m − 4 πr 3 P 

r − 2 m 

ξ

]

− (1 + 8 πr 2 P ) m 0 

( r − 2 m ) 2 
− 4 πr 2 ( ρ + P ) p 0 

r − 2 m 

. (A15) 

n practice, one can integrate the equations with the boundary
onditions at r → 0 

 0 ( r) = 

4 π
15 

(
ρc + P c 

) [ d ρ
d P | r= 0 + 2 

]
ξ (0) 2 r 5 , (A16) 

 0 ( r) = 

1 
3 ξ (0) 2 r 2 . (A17) 

here ρc and P c are the energy density and the pressure at the centre
f the star. Outside of the star, the analytical solution of m 0 is 

 0 ( r) = δM − J 2 

r 3 
. (A18) 

he constant δM is the correction of the gravitational mass at order
2 . The match condition of m 0 at surface of the star is 

 m 0 ] = 

4 πR 

3 ρ ( R −) ( R − 2 M) p 0 ( R) 

M 

. (A19) 
NRAS 509, 2758–2779 (2022) 
hen the total gravitational mass of the rotating star can be repre-
ented as 

 + δM = M + m 0 ( R ) + 

J 2 

R 

3 
+ 

4 πR 

3 ρ ( R −) ( R − 2 M) p 0 ( R ) 

M 

. 

(A20) 

nce p 0 , δM , and J are calculated, the interior solution of h 0 can be
btained from equation (A12), while the exterior solution of h 0 is 

 0 ( r) = − δM 

r − 2 M 

+ 

J 2 

r 3 ( r − 2 M) 
. (A21) 

he spherical stretching of isodensity surface at the radial coordinate
 can be represented as 

0 ( r) = p 0 r( r − 2 m ) 
/ (

m + 4 πr 3 P 

)
, (A22) 

nd the variation of the stellar radius δR is then 

R = ξ0 ( R ) = 

R ( R − 2 M) p 0 ( R ) 

M 

. (A23) 

2.2 Quadrupole part 

e obtain the quadrupole deformation of the star by integrating the
ifferential equations of h 2 and v 2 

d v 2 
d r 

= 

1 

r( r − 2 m ) 

{
− 2 h 2 

(
m + 4 πr 3 P 

)+ 

(
r − m + 4 πr 3 P 

)

×
[

8 πr 5 ( ρ + P ) ξ 2 

3( r − 2 m ) 
+ 

u 

2 

6 r 4 

]}
, (A24) 

d h 2 
d r 

= h 2 

{
r 2 

2 
(
m + 4 πr 3 P 

) [
8 π( ρ + P ) − 4 m 

r 3 

]
− 2 

(
m + 4 πr 3 P 

)
r( r − 2 m ) 

}

− 2 v 2 
m + 4 πr 3 P 

+ 

u 2 

6 r 5 

[ 
m + 4 πr 3 P 

r − 2 m 

− r 

2 
(
m + 4 πr 3 P 

)
] 

+ 

8 πr 5 ( ρ + P ) ξ 2 

3( r − 2 m ) 

[ 
m + 4 πr 3 P 

r( r − 2 m ) 
+ 

1 

2 
(
m + 4 πr 3 P 

)
] 

. (A25) 

he general interior solutions of h 2 and v 2 can be obtained by
ombinations of homogeneous solutions and particular solutions, 

 2 = v 
p 
2 + C v h 2 , h 2 = h 

p 
2 + C h 

h 
2 , (A26) 

here C is a constant to be determined. The particular solutions v p 2 

nd h 

p 
2 can be calculated by integrating equations (A24)–(A25) and

aking the boundary conditions near the centre of the star 

 

p 
2 = Br 4 , h 

p 
2 = Ar 2 . (A27) 

he constants A and B satisfy 

 + 2 π

(
1 

3 
ρc + P c 

)
A = 

2 π

3 
( ρc + P c ) ξ (0) 2 . (A28) 

he homogeneous solutions v h 2 and h 

h 
2 can be obtained by integrating

d v h 2 

d r 
= 

1 
r ( r −2 m ) 

{−2 h 

h 
2 

(
m + 4 πr 3 P 

)}
, (A29) 

d h h 2 

d r 
= h h 2 

{
r 2 

2 
(
m + 4 πr 3 P 

) [
8 π( ρ + P ) − 4 m 

r 3 

]
− 2 

(
m + 4 πr 3 P 

)
r( r − 2 m ) 

}

− 2 v h 2 

m + 4 πr 3 P 
, (A30) 

ith the boundary conditions at r → 0 

 

h 
2 = B 1 r 

4 , h 

h 
2 = A 1 r 

2 . (A31) 

he constants A 1 and B 1 satisfy the relation 

 1 + 2 π
(1 

3 
ρc + P c 

)
A 1 = 0 . (A32) 
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he exterior solutions of v 2 and h 2 can be calculated analytically 

 2 = J 2 
(

1 
M r 3 

+ 

1 
r 4 

) + KQ 

2 
2 

(
r 
M 

− 1 
)

, (A33) 

 2 = − J 2 

r 4 
+ K 

2 M 

[ r ( r −2 M )] 1 / 2 
Q 

1 
2 

(
r 
M 

− 1 
)

, (A34) 

here Q 

1 
2 and Q 

2 
2 are Legendre functions of the second kind and

 is a constant to be determined together with C by matching the
nterior and exterior solutions at the boundary of the star. The match
onditions are 

 v 2 ] = 0 , [ h 2 ] = 0 . (A35) 

he quadrupole moment can then be read off from the Newtonian 
otential far from the star 

 = −8 K M 

3 

5 
− J 2 

M 

. (A36) 

he function m 2 can be obtained from an algebraic relation 

 2 = ( r − 2 m ) 

[
−h 2 + 

8 πr 5 ( ε + P ) ξ 2 

3( r − 2 m ) 
+ 

u 

2 

6 r 4 

]
, (A37) 

nd the match condition at the surface of the star is 

 m 2 ] = −8 πR 

5 ρ( R −) ξ ( R) 2 / 3 . (A38) 

nce we know the solutions of v 2 , h 2 , and m 2 , the function p 2 can
e calculated from the relation in equation (A13). The eccentricity 
f the isodensity surface can be defined as (Hartle & Thorne 1968 ) 

( r) = [ −3 ( v 2 − h 2 + ξ2 /r ) ] 
1 / 2 , (A39) 

nd the surface eccentricity e s can be obtained by taking r = R . 

3 The third order 

n the third order, the l = 1 function w 1 and the l = 3 function w 3 will
nter. As we mentioned in the main text, the correction to the angular
omentum and moment of inertia do not depend on the function 
 3 . Therefore, we only concentrate on the calculation of w 1 . The
ifferential equation is (Hartle 1973 ; Benhar et al. 2005 ) 

d 

d r 

(
r 4 j 

d w 1 

d r 

)
+ 4 r 3 

d j 

d r 
w 1 = r 4 D 0 − 1 

5 
r 4 D 2 , (A40) 

here 

 

4 D 0 = −u 

d 

d r 

[
m 0 

r − 2 m 

+ h 0 

]
− 16 πr 5 ξ ( ρ + P ) 

r − 2 m 

×
[

2 m 0 

r − 2 m 

+ 

(
d ρ

d P 

+ 1 

)
p 0 + 

2 r 3 ξ 2 

3( r − 2 m ) 

]
, (A41) 

r 4 D 2 

5 
= 

u 

5 

d 

d r 

[
4 v 2 − 5 h 2 − m 2 

r − 2 m 

]
− 16 πr 5 ξ ( ρ + P ) 

5( r − 2 m ) 

×
[

2 m 2 

r − 2 m 

+ 

(
d ρ

d P 

+ 1 

)
p 2 − 2 r 3 ξ 2 

3( r − 2 m ) 

]
. (A42) 

imilarly with the first order, we introduce two variables 

1 = jw 1 , u 1 = r 4 j 
d w 1 

d r 
, (A43) 

nd equation (A40) can then be written as 
d ξ1 

d r 
= 

u 1 

r 4 
− 4 πr 2 ( ρ + P ) ξ1 

r − 2 m 

, (A44) 

d u 1 

d r 
= 

16 πr 5 ( ρ + P ) ξ1 

r − 2 m 

+ r 4 D 0 − r 4 

5 
D 2 . (A45) 

nside of the star, the general solutions are combinations of particular
olutions and homogeneous solutions 

1 = ξ
p 
1 + C 1 ξ

h 
1 , u 1 = u 

p 
1 + C 1 u 

h 
1 , (A46) 

here C 1 is a constant. The particular solutions can be obtained with
he boundary conditions at the centre of the star 
p 
1 (0) = 0 , u 

p 
1 (0) = 0 . (A47) 

etting D 0 = D 2 = 0, one obtains the homogeneous equations.
he solutions of ξ h 

1 and u 

h 
1 can be obtained by integrating the

omogeneous equations with the asymptotical conditions at r → 

 

h 
1 ( r) = A 2 

[
1 − 2 π

5 

(
ρc + P c 

)
r 2 
]

, (A48) 

 

h 
1 ( r) = A 2 

[
16 π

5 

(
ρc + P c 

)
r 5 
]

, (A49) 

here A 2 is a constant that can be chosen arbitrarily. Outside of the
tar, ξ 1 and u 1 can be solved analytically 

1 ( r ) = 

2 δJ 

r 3 
+ G ( r ) , u 1 ( r ) = −6 δJ + Y ( r) . (A50) 

he functions G ( r ) and Y ( r ) can be represented as (Benhar et al.
005 ) 

 ( r) = −12 J 3 

5 r 7 
− 4 J 3 

5 M r 6 
+ 

J K 

40 M 

3 r 4 

[
108 r 4 ln 

(
r 

r − 2 M 

)

− 288 r 3 M ln 

(
r 

r − 2 M 

)
+ 33 r 4 − 240 r 3 M 

+ 336 r 2 M 

2 + 256 M 

3 r − 96 M 

4 

+ 192 r M 

3 ln 

(
r 

r − 2 M 

)
+ 12 r 4 ln 

(
r 

r − 2 M 

)]
− 33 J K 

40 M 

3 
,

(A51)

 ( r) = 

84 J 3 

5 r 4 
+ 

24 J 3 

5 M r 3 
+ 

24 KJQ 

2 
2 

(
r 
M 

−1 
)

5 − 48 K M JQ 

1 
2 

(
r 
M 

−1 
)

5 
(

r ( r −2 M ) 
)1 / 2 . (A52) 

he constant δJ is the angular momentum at order �3 , which can be
btained together with C 1 by matching the solutions of ξ 1 and u 1 at
he boundary of the star. Note that the match conditions of ξ 1 and u 1 
re 

 ξ1 ] = 0 , (A53) 

 u 1 ] = −16 πR 

6 ρ ( R −) ξ ( R) 

M 

(
p 0 ( R) − 1 

5 
p 2 ( R) 

)

−4 πR 

3 ρ( R −) u ( R ) p 0 ( R ) 

M 

− 8 πR 

5 ρ( R −) u ( R ) ξ ( R ) 2 

15( R − 2 M) 
. (A54) 

he contribution of the moment of inertia at the second order of �
s δI = δJ / �. 

his paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 
MNRAS 509, 2758–2779 (2022) 


	1 INTRODUCTION
	2 STRANGEON STARS IN THE LENNARD-JONES MODEL
	3 EQUILIBRIUM BACKGROUND OF SPHERICAL AND STATIC STARS
	4 SLOWLY ROTATING STRANGEON STARS
	5 TIDAL DEFORMATION AND TIDAL LOVE NUMBERS
	6 I-LOVE-Q UNIVERSAL RELATIONS
	7 DISCUSSIONS AND CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: ORDINARY DIFFERENTIAL EQUATIONS RELATED TO SLOWLY ROTATING RELATIVISTIC STARS

