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ABSTRACT
We analyse the timing residuals for 50 pulsars observed using the Nanshan 25-m radio telescope
at Urumqi Observatory by determining the Hurst parameter for each data set using the rescaled
range method. These pulsars have been observed over a time span of 5–8 yr and have been
selected to have timing residuals that resemble white noise rather than smooth curves. The
results are compared with those for shuffled residual series. Despite the noise-like appearance,
some timing residual series showed Hurst parameters that deviated significantly from the
shuffled series. We conclude that Hurst parameter analysis is capable of detecting long-term
memory in timing residuals.

Key words: methods: statistical – pulsars: general.

1 I N T RO D U C T I O N

All pulsars show a remarkable uniformity of rotation rate on a
time-scale of a few days, as expected of an isolated spinning body
with a large stable moment of inertia (Lyne & Smith 2006). The
angular momentum of a radio pulsar is slowly decreasing through
the slowdown torque of the magnetic dipole radiation. However,
there are some interesting irregularities, such as timing noise (which
exhibits itself as low-frequency noise) and glitch events (which are
sudden changes in the pulsar spin frequency).

It is anticipated that valuable information regarding many inter-
esting physical processes related to pulsars is coded in the timing
residual. Therefore, employing statistical measures to character-
ize the timing residual is important in the study of pulsars and
consequently the properties of matter at supranuclear densities. Ef-
forts to quantify low-frequency timing residuals were made as early
as the 1970s. According to random walks of various quantities
(Boynton et al. 1972), most current models such as vortex creeping
are still restricted to treatment of timing noise only as a random pro-
cess in certain quantities. One exception was presented by Harding,
Shinbrot & Cordes (1990), who analysed timing data of the Vela
pulsar to look for evidence of chaotic behaviour using a ‘correlation
sum’ technique to estimate the fractal dimension of the system. In
contrast, little attention was paid to higher frequency timing residu-
als, which after the subtraction of the smooth component look like
white noise.

Furthermore, the number of observed pulsars has accumulated
to ∼103 (Manchester et al. 2005), but the data collected are often
incomplete for a conclusive analysis. It is, therefore, crucial to diag-
nose currently available data even though these are limited in data
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span. The results could guide us to concentrate on those pulsars
with anomalous timing residuals in future observations. Here, we
introduce a statistical method rarely used in time-domain astron-
omy: Hurst parameter analysis, which is sensitive to any inherent
correlation in the time series. Our analysis of the timing data ob-
served by the 25-m radio telescope at Urumqi Observatory for 50
pulsars indicates that Hurst parameter analysis is capable of de-
tecting anomalous signals that disguise themselves as white-noise
residuals.

In Section 2 we introduce the Hurst parameter and some other
related concepts, then describe a modified rescaled range method
to estimate the Hurst parameter for timing residual series with the
simple Monte Carlo simulation used in this article. In Section 3 we
present the estimated Hurst parameters for 50 selected pulsars. A
discussion of the results and conclusion are given in Section 4.

2 HURST PARAMETER ANALYSI S

2.1 Basic concepts

A discrete time series {Rt } is called independently distributed if two
variables in any pair are independent of each other, i.e. covariance
Cov(Ri, Rj ) = 0 for any i �= j . An independently distributed series
is often called white noise for its constant power spectrum. A dis-
crete time series is called stationary if its probability distribution and
correlation structure are constant with respect to time. More strictly
speaking, the time series is stationary if, for any d variables picked
from the series, the vectors (Rk1 , . . . , Rkd

) and (Rk1+n, . . . , Rkd+n)
have the same n-point distribution (Dieker 2004).

A stationary time series is called self-similar if it looks the same
after scaling up by a factor. To be more specific, if we sum m consec-
utive variables R′

k = ∑m(k+1)−1
i=mk Ri , there exists a scaling function

a(m) so that for any d variables from the series (Rk1 , . . . , Rkd
) the
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vectors (Rk1 , . . . , Rkd
) and a(m)(R′

k1
, . . . , R′

kd
) have the same n-

point distribution (Dieker 2004). Finally, a time series is said to
have Hurst parameter H if it is stationary, self-similar and have a
scaling function a(m) ∝ m−H (Hurst 1951). It is easy to see that if
we take {Rn} as the pace length of a random walk, the newly defined
series {R′

n} is just the range covered by the m consecutive steps of
that random walk.

Independently distributed series have H = 1/2. A time series
with H �= 1/2 is called fractal Brownian motion. The name comes
from the fact that the Hurst parameter is related to fractal dimension
D of the time series through D = 2 − H . For series with H > 1/2
the generated random walk will cover a longer range than Brownian
motion, implying a positive correlation. For series with H < 1/2 the
generated random walk will cover a shorter range than Brownian
motion, implying a negative correlation or in other words a self-
reverting trend; such a series is called an anti-persistent series.
Therefore, estimation of the Hurst parameter can probe correlation
inside a series, i.e. how memory of its past influences its future.

2.2 Calculation methods

Various methods to estimate the Hurst parameter were introduced
over the years in the study of long-memory time series. Several of
the most widely known methods are the rescaled range method (also
known as the R/S method), the aggregated variance method, the ab-
solute value of aggregated series method (henceforth called the ab-
solute value method), Higuchi’s method, the periodogram method,
Peng’s method and Whittle’s method (for a detailed description
of these methods, the reader is referred to Taqqu, Teverovsky &
Willinger 1995). In the following calculation, we choose to adopt
the rescaled range method1 modified to account for non-uniformly
sampled time series.

In Taqqu et al. (1995) and Rea, Reale & Brown (2009), several
widely used methods including the rescaled range method were
tested on simulated long-memory series of length ∼103–104 with
known Hurst parameter values (fractal Gaussian noise, ARIMA
models and the Campito data). They concluded that the rescaled
range method has a small bias in estimating the Hurst parameter,
which decreases very slowly with increasing series length. On the
other hand it is one of the two best-performing estimators when
applied to Campito data and when judged by the Beran test (Beran
1994). In this work we choose the rescaled range method because
of two advantages. First, the method gives a more accurate Hurst
parameter when estimating series with length less than 1000 than
several other methods. Second, it is easy to use and easy to modify
for non-uniformly sampled series.

2.3 The rescaled range method

Here we describe the rescaled range method to estimate the Hurst
parameter for timing residual series. The validity of this method is
based on the theorem by Hurst (1951) and Feller (1951) stating that,
for any independent random process with finite variance, the range
covered by a random walk divided by the standard deviation has the
trend

R/S =
√

πτ

2
. (1)

1 The rescaled range method is the original method to estimate the Hurst
parameter by Hurst (1951).

To estimate the parameter using the rescaled range method for
timing residual record R1, R2, . . . , RN taken at time t1, . . . , tN , we
first split this series into n segments of length �tn ≈ (tN − t1)/n,
i.e. {RN } is re-grouped in the following way:

R1, . . . , R�1 ; R�1+1, . . . , R�2 ; . . . ; R�n−1+1, . . . , XR,

so that

t1 + (i − 1)�t ≤ t�i
, t�i+1, . . . , t�i+1 −1 < t1 + i�t. (2)

For the ith segment {R�i
, . . . , R�i+1−1} for example, we calculate the

average Ai and the standard deviation Si of the record {0, R�i+1 −
R�i

, . . . , R�i+1−1 − R�i
} to form a new series {Y�i

, . . . , Y�i+1−1}, the
elements of which are given by

Y�i+k = 1

Si

(R�i+k − Ai). (3)

The range R̃
(n)
i is defined to be the difference between the maximum

and the minimum of the accumulated series:

Z
(i)
k =

k∑
j=1

Y�i+j (k ≤ �i+1 − �i − 1),

R̃
(n)
i ≡ max

(
Z

(i)
k=1,...

)
− min

(
Z

(i)
k=1,...

)
,

(4)

where the superscript n is the number of segments and for each n
there is an averaged range

R̃(n) = 1

n

n∑
i=1

R̃
(n)
i . (5)

Therefore, for n = 1, 2, . . . , nmax we obtain a series {(�tn, R̃
(n))}.

nmax is chosen to be the largest segment number to ensure that every
segment contains at least five data points. To estimate the power-law
index, we then use linear regression to fit {(log �tn, log R̃(n))} for
the slope as an estimation of the Hurst parameter H.

2.4 Simple Monte Carlo simulations

There are two complications when estimating the Hurst parameter
using the rescaled range method for actual timing residual data.

(i) The original rescaled range method can only estimate the
Hurst parameter for data without errors; however, for pulsar timing,
errors in time of arrival are not negligible.

(ii) The formula (R/S) ∼ τ 1/2 for independent series is only
satisfied asymptotically. In fact, comparing the Hurst parameter
estimated for a finite series with the exact value 0.5 is inappropriate
due to the bias in the rescaled range method mentioned before.

To take error bars into account, we use a simple Monte Carlo
simulation. First, generate2 1000 series {(tn, Rn)} for each timing
residual series, where Rn follows a Gaussian distribution with stan-
dard deviation equal to the data error-bar lengths and expectation
equal to the centres of the data error bars. Then, the Hurst param-
eters H of these series are calculated for each residual series, their
average and standard deviation being taken as the estimated Hurst
parameter and its uncertainty.

In order to make sure that deviation from 0.5 truly represents
a persistent or anti-persistent trend, we shuffle the residuals to-
gether with their uncertainties ten times (leaving the observation
time unchanged) and then calculate the Hurst parameter for these

2 Throughout this paper we use a Mersenne–Twister pseudo-random number
generator to generate random numbers.
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ten shuffled series using the above method. If, on average, the shuf-
fled residual series have Hurst parameters that are much closer to
0.5, then we can conclude that the deviation in calculated Hurst pa-
rameter for residual series truly represents (anti-)persistence of the
series, since random shuffling should destroy any memory structure
hidden in the series.

Before analysing the result, it is necessary to clarify several is-
sues. First, it is generally believed (Rea et al. 2009) that the rescaled
range method has a bias in estimating the Hurst parameter. It was
pointed out in very early studies that in practical use the rescaled
range method tends to overestimate H for H < 0.72 (Mandelbrot &
Wallis 1969; Feder 1988). It can be easily shown that several other
methods give a more accurate Hurst parameter than the rescaled
range method for long time series (with a length of ≥1000). For ex-
ample, for 1000 independent series with length 1000 and following
a standard normal distribution, we estimated the Hurst parameters
using the aggregated variance, absolute value and rescaled range
methods and obtained H = 0.564 ± 0.048, 0.494 ± 0.055 and
0.487 ± 0.060 respectively. Because of this effect, our method of
comparing shuffled and unshuffled series is only capable of con-
firming persistence with a Hurst parameter significantly larger than
0.5. On the other hand, the aggregated variance and absolute value
methods give a much less accurate Hurst parameter estimation for
short series, especially short series with non-uniform sampling. For
example, we produced 1500 series of length 300 with randomly dis-
tributed sample spacing (spacings are taken to follow the absolute
value of a normal distribution with mean 10 and standard deviation
10, which resembles a pulsar timing residual series) and estimated
the Hurst parameters for these series using the modified rescaled
range method and aggregated variance and absolute value methods
modified similarly to the procedure in Section 2.3. The distributions
of the estimated Hurst parameters are shown in Fig. 1. Mean Hurst
estimations for the aggregated variance and absolute value meth-
ods are 0.29 and 0.43 with standard deviations of 0.26 and 0.19
respectively. As we can see from Fig. 1, the distributions of Hurst

Figure 1. Distribution of Hurst parameters estimated by various methods
for 1500 series of length 300 with randomly distributed sample spacings. The
solid line, dashed line and shaded distributions are given by the aggregate
variance, absolute value and rescaled range methods, respectively.

Figure 2. Hurst parameters of six smooth-curve series similar to timing
noise.

estimations for aggregated variance and absolute value methods are
quite dispersed, while the rescaled range method gives a much more
concentrated distribution with H = 0.581 ± 0.055. This is the rea-
son we chose the rescaled range method for estimating the Hurst
parameter in this work.

A second issue is that timing noise with a smooth appearance
will yield a trivial Hurst parameter H ∼ 1. This can be easily un-
derstood through the relation with fractal dimension D = 2 − H .
To illustrate this effect we generate six series of 20 random numbers
and interpolate each series to obtain a polynomial. Next we sample
these smooth polynomials with a frequency ten times higher. The
estimated Hurst parameters, together with sampled data points of
a smooth curve, are shown in Fig. 2. As we can see, all Hurst pa-
rameters are near 1. Since the low-frequency component dominates,
these six series have very strong correlation between consecutive
data points and this makes the length covered by accumulated ran-
dom walks increase almost linearly with time on small scales. In this
case, Hurst parameter analysis provides no more information than
one can see with the naked eye. Hence Hurst parameter analysis can
only be used on timing residuals with a white-noise appearance.

The last issue is that Hurst parameter analysis is capable of de-
tecting long-term memory, while simpler methods to explore de-
pendence such as an adjacent pair-correlation sum are unable to
detect such a feature. To illustrate this capability we generate a time
series with vanishing correlation between adjacent data points but
with a correlation length of 10 data points with the following steps.

(i) Generate 1000 random numbers (standard normal distribu-
tion) X1, . . . , X1000.

(ii) Define a new series {Yi} with Yi = Xi for i = 1, . . . , 10, and
Yi = (Xi−10 + Xi)/2 for i = 11, . . . , 1000.

(iii) Shuffle the time series {Yi} to obtain {Zi}.
The two time series {Yi} and {Zi} are shown in Fig. 3. The time se-

ries {Yi} by definition has no correlation between adjacent variables
at all but has correlation length = 10, while {Zi} should be an inde-
pendent series. The Hurst parameters for the two series estimated
by the rescaled range method are HY = 0.657 and HZ = 0.606
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Figure 3. A simulated time series with correlation length = 10 and the shuf-
fled series together with their Hurst parameters (estimated by the rescaled
range method) and average correlations between adjacent values.

respectively. On the other hand, the average Pearson’s correlations
between adjacent values are ρ̄Y = 0.0433 and ρ̄Z = 0.0634 respec-
tively, which shows no significant difference.

3 TIMING R ESIDUA L DATA A NA LY SIS

3.1 The sample of observed timing residuals

Data analysed in this work consist of 5–8 yr of timing residual data
from the Nanshan 25-m radio telescope at Urumqi Observatory.
Timing data are processed using the standard pulsar software pack-
ages PSRCHIVE (Hotan, van Straten & Manchester 2004) and TEMPO2
(Hobbs, Edwards & Manchester 2006) to obtain timing residuals.
The times of arrivals (TOA) of radio pulses are fitted using PSRCHIVE

software from observation data by an input-accumulated pulse pro-
file. The TEMPO2 software uses coordinate-system conversion pa-
rameters that account for various effects (Roemer delay, Einstein
delay, Shapiro delay, etc.) and pulsar parameters (P , Ṗ , etc.) to
establish a model to predict the arrival time of pulses. The timing
residual is obtained as the difference between the observation and
this timing model. We then used the splk package of TEMPO2 to
output timing residuals with error bars in units of seconds at each
TOA. We select 50 pulsars among those regularly monitored at
Nanshan with a central radio frequency (RF) of 1540 MHz and total
bandwidth of 320 MHz (Wang et al. 2001). For a certain pulsar, its
timing observation is made about once per ten days. The standard
of selection is a large signal-to-noise ratio profile and large mean
flux at 1400 MHz, residuals resembling white noise and with no
recognizable glitch. Basic parameters of selected pulsars (P , Ṗ ,
dispersion measure DM and degree of linear polarization) from the
ATNF Pulsar Catalogue (Manchester et al. 2005) and EPN data
archive are also listed in Table 1.

3.2 Results and analysis

Using the above methods, Hurst parameters H for timing residual
series and H′ for shuffled series of the selected 50 radio pulsars
are calculated, together with uncertainties estimated by the simple
Monte Carlo method explained in the above section. The results are
listed in Table 1 together with the basic parameters of the corre-
sponding pulsars. The distribution of Hurst parameters of residual
series is shown in Fig. 4. Fig. 5 shows a comparison between the
Hurst parameters before and after shuffling: Hurst parameters after
shuffling are all near 0.5 and are plotted as a connected error-bar
band.

From Figs 4 and 5 we see that data length and non-uniformity
have only a limited effect on the value of shuffled Hurst parameters,
since they are all near 0.5. On the other hand, several pulsars do
show Hurst parameters that differ significantly from the shuffled
values.

From these results, we can see that most Hurst parameters for
pulsar timing residuals are concentrated around ∼0.5–0.6. How-
ever, there are some Hurst parameters far away from the shuf-
fled series. For PSRs J0612+3721, J1136+1551, J1847−0402,
J2048−1616 and J2354+6155 the calculated Hurst parameter av-
erage is H ≥ 0.72 and, as is shown in Fig. 5, the Hurst parameters
drop toward 0.5 significantly after shuffling, indicating strong per-
sistence, and the error bars of Hurst values before and after shuffling
are far apart. As mentioned in Section 2.4, the rescaled range method
tends to overestimate series with Hurst parameter <0.72, therefore
these Hurst parameter values are less likely to be overestimated
to such a high level. On the other hand, for PSRs J0055+5117,
J0134−2937, J2308+5547 and J2326+6113 the calculated Hurst
parameter values H ≤ 0.45; these increase significantly after shuf-
fling, indicating considerable anti-persistence, and the error bars
before and after shuffling do not overlap.

In Fig. 6 we select three pulsars to illustrate typical persistent
and anti-persistent timing residual series: PSR J0055+5117 with
H = 0.36(2) and H ′ = 0.55(8) representing anti-persistent series,
PSR J2108+4441 with H = 0.55(3) and H ′ = 0.61(5) representing
independent series and PSR J2354+6155 with H = 0.74(3) and
H ′ = 0.57(4) representing persistent series.

4 D I SCUSSI ON AND C ONCLUSI ON

We calculated the Hurst parameter using the rescaled range method
for timing residual series of 50 radio pulsars with white-noise-like
timing residuals obtained from the Nanshan telescope and compared
the result with that of shuffled series. Most of the pulsars from our
selection have Hurst parameters that do not differ much from the
shuffled values. However, we found several pulsars (some showing
a persistent trend and a few showing an anti-persistent trend) with
interesting Hurst parameters despite having white-noise-like timing
residuals. Comparison with Hurst parameters after shuffling con-
firms that these trends cannot be attributed to finite-length effects or
uncertainties in the timing residual. This shows that our algorithm
is capable of detecting hidden correlation in apparently noise-like
timing residuals. We therefore suggest that these pulsars be mon-
itored continually to confirm or disprove long-term memory and
search for the possible physical process behind such a correlation.

Regarding the selection, we picked 50 pulsars with a large mean
flux at 1400 MHz and large signal-to-noise ratio profile that have
white-noise-like timing residuals without any trends visible to the
naked eye. We are not attempting to perform correlation between
the Hurst parameter and other pulsar properties or obtain statistics
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Table 1. Basic parameters of the selected 50 pulsars from the ATNF Pulsar Catalog Manchester et al. (2005), together with Hurst
parameters for the timing residuals before and after shuffling estimated by the rescaled range method, denoted by H and H′ respectively.
Degrees of linear polarization 〈L〉/〈I 〉 at 1400 and 1600 MHz are taken from Gould & Lyne (1998) except for J0134−2937, J0215+6218,
J1741−3927. For J1741−3927〈L〉/〈I 〉 = 11 per cent at 1560 MHz according to Wu et al. (1993).

No. PSR P Ṗ DM
〈L〉/〈I 〉(per
cent) H H′

(s) (10−16) (cm−3· pc) 1.4 GHz 1.6 GHz

1 J0034−0721 0.9430 4.082 11.38 5 13 0.52(4) 0.56(8)
2 J0055+5117 2.1152 95.38 44.13 27 38 0.36(2) 0.55(8)
3 J0134−2937 0.1370 0.7837 21.81 – – 0.45(4) 0.63(11)
4 J0141+6009 1.2229 3.911 34.80 20 21 0.51(3) 0.58(4)
5 J0152−1637 0.8327 12.99 11.92 18 – 0.58(7) 0.57(8)

6 J0215+6218 0.5489 6.621 84.00 – – 0.58(5) 0.56(6)
7 J0304+1932 1.3876 12.95 15.74 5 7 0.55(6) 0.58(8)
8 J0502+4654 0.6386 55.82 42.19 2 12 0.66(4) 0.56(6)
9 J0525+1115 0.3544 0.7361 79.35 7 12 0.53(7) 0.6(7)
10 J0601−0527 0.3960 13.02 80.54 27 31 0.5(4) 0.53(8)

11 J0612+3721 0.2980 0.5947 27.14 8 19 0.76(3) 0.57(7)
12 J0814+7429 1.2922 1.681 6.116 31 36 0.57(3) 0.55(6)
13 J0820−1350 1.2381 21.05 40.94 6 7 0.55(5) 0.56(6)
14 J0837+0610 1.2738 67.99 12.89 4 12 0.6(5) 0.56(6)
15 J0846−3533 1.1161 16.01 94.16 – 23 0.59(2) 0.59(6)

16 J0908−1739 0.4016 6.695 15.89 6 10 0.54(4) 0.59(6)
17 J0943+1631 1.0874 0.9109 20.32 7 29 0.51(7) 0.56(9)
18 J1041−1942 1.3864 9.449 33.78 3 3 0.54(9) 0.56(11)
19 J1115+5030 1.6564 24.93 9.195 14 28 0.57(7) 0.57(10)
20 J1136+1551 1.1879 37.34 4.864 9 16 0.79(3) 0.57(5)

21 J1239+2453 1.3824 9.600 9.242 35 33 0.59(5) 0.55(6)
22 Jp1257−1027 0.6173 3.627 29.63 27 32 0.57(6) 0.58(8)
23 J1543+0929 0.7484 4.325 35.24 12 5 0.58(3) 0.57(7)
24 J1703−3241 1.2118 6.598 110.3 – – 0.6(4) 0.58(6)
25 J1733−2228 0.8717 0.4270 41.14 11 9 0.51(5) 0.59(8)

26 J1741−0840 2.0431 22.75 74.90 11 19 0.46(8) 0.59(11)
27 J1741−3927 0.5122 19.31 158.5 – – 0.69(3) 0.58(6)
28 J1750−3157 0.9104 1.965 206.3 21 – 0.58(5) 0.57(11)
29 J1807−0847 0.1637 0.2880 112.4 5 10 0.65(5) 0.55(7)
30 J1822−2256 1.8743 13.54 121.2 18 15 0.64(3) 0.64(7)

31 J1823+0550 0.7529 2.267 66.78 11 10 0.56(8) 0.57(9)
32 J1837−0653 1.9058 7.720 316.1 19 40 0.56(3) 0.56(8)
33 J1840+5640 1.6529 14.95 26.70 31 18 0.55(4) 0.58(5)
34 J1847−0402 0.5978 517.1 141.98 8 17 0.79(3) 0.56(6)
35 J1900−2600 0.6122 2.045 37.99 11 17 0.49(6) 0.56(7)

36 J1921+2153 1.3373 13.48 12.46 3 9 0.58(4) 0.58(5)
37 J1946+1805 0.4406 0.2409 16.22 28 28 0.5(4) 0.57(7)
38 J1954+2923 0.4267 0.01711 7.932 24 12 0.45(10) 0.59(11)
39 J1955+5059 0.5189 13.72 31.97 10 12 0.64(5) 0.58(5)
40 J2002+4050 0.9051 17.39 131.3 4 9 0.54(4) 0.57(5)

41 J2013+3845 0.2302 88.51 238.2 66 64 0.54(3) 0.59(7)
42 J2018+2839 0.5580 1.481 14.17 5 7 0.65(5) 0.56(5)
43 J2048−1616 1.9616 109.6 11.46 21 18 0.73(6) 0.57(7)
44 J2108+4441 0.4149 0.8621 139.8 10 12 0.55(3) 0.61(5)
45 J2113+4644 1.0147 7.146 141.3 19 24 0.62(3) 0.57(6)

46 J2157+4017 1.5253 34.33 70.86 18 24 0.66(3) 0.56(4)
47 J2308+5547 0.4751 1.995 46.54 4 15 0.45(4) 0.58(9)
48 J2321+6024 2.2565 70.37 94.59 19 17 0.63(4) 0.55(5)
49 J2326+6113 0.2337 3.526 122.6 11 18 0.47(4) 0.55(5)
50 J2354+6155 0.9448 162.6 94.66 19 16 0.74(3) 0.57(4)

of Hurst parameter values for a large population, since our selection
may be biased. Our method is aimed at finding the possibility that
timing noise resembling white noise is not really an independent
random series. As is well known, many pulsars have rather smooth
timing residuals commonly known as timing noise. These residual

series would yield quite large Hurst parameters, as is shown in
Section 2.4, because smooth curves have trivial fractal dimensions.

It should also be mentioned that TOA are obtained using the
Nanshan telescope, which receives two linear polarizations, but the
two channels are not calibrated before summing to form the total
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Figure 4. Distribution of Hurst parameters for the 50 selected pulsars.

Figure 5. Hurst parameters of 50 pulsar timing residual series. Black dots
with error bars are Hurst parameters for each pulsars timing residual series.
The grey band is connected by error bars of shuffled residual series of the
same pulsar. The order of the pulsars is the same as in Table 1.

intensity. There can be a parallactic effect, which might possibly
create dependence in residual series for pulsars with high linear
polarization if the gains of the two channels are not well-matched.
Its size depends on the mismatch of the gains and the degree and
form of the linear polarization, but should only be a small fraction
(�0.1) of the pulse width even if the gains differ by 1–2 dB. We list
the degree of linear polarization 〈L〉/〈I 〉 at 1400 and 1600 MHz for
most of the selected 50 pulsars in Table 1, where L = (Q2 +U 2)1/2.
We plot the Hurst parameter against 〈L〉/〈I 〉 in Fig. 7 and, as we
can see, there is no clear dependence of the Hurst parameter on the
degree of linear polarization.

There are various physical processes that might be responsible
for the long-term memory of the pulsar timing residual. These can
be classified into three groups:

(i) processes from the interior of the neutron star, i.e. due to the
fluctuation of internal (e.g. microquakes due to the partial release

Figure 6. Representative timing residuals. Top: PSR J0055+5117 repre-
senting an anti-persistent series; middle: PSR J2108+4441 representing
an independent series; bottom: PSR J2354+6155 representing a persistent
series.

of elastic energy (Pines & Shaham 1972) and random pinning and
unpinning of vortex lines (Packard 1972; Anderson & Itoh 1975))
and external (e.g. accretion flow; Lamb, Pines & Shaham 1978)
torques;

(ii) emission processes (e.g. magnetospheric activity; Cheng
1987);
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Figure 7. The Hurst parameter against the degree of linear polarization at
1400 and 1600 MHz. All pulsars in our selection except for four have data
covering at least one of these two wavelengths. See Table 1.

(iii) processes arising from the propagation of radio emission
(e.g. dispersion-measure variations and gravitational waves).

For the last class of origin, it has long been proposed that the tim-
ing residual can be used to set upper limits on gravitational waves
(Bertotti, Carr & Rees 1983) and that, given enough time, pulsar tim-
ing arrays might be the first equipment to detect gravitational waves
directly (Manchester 2006). Most of these previous works predict
uncorrelated randomness or random walks in certain quantities,
while the Hurst parameter may be capable of uncovering richer de-
pendent structure that is hidden in the timing residual. The physical
origin that leads to dependent series is much more limited than that
of uncorrelated random fluctuations. Therefore, long-term memory
detected by the Hurst parameter may reveal more detailed informa-
tion about the physical origin of the timing residual. For instance,
it has been proposed that under certain conditions Euler equations
for rotating objects with magnetic dipole moment misaligned with
the rotation axis would show chaotic spin-down behaviour (see
Harding et al. 1990). Chaotic behaviour may lead to an interesting
Hurst parameter, since it is essentially dependent.

Lastly, our choice of estimator is based on the fact that available
timing residual records are limited in length. With the accumulation
of timing data we will have long enough timing residual series to

adopt the unbiased algorithms mentioned in Section 2.2 with better
convergence, and therefore obtain much more information on the
hidden long memory of timing residuals. Therefore, we expect that
the application of the Hurst parameter to timing residuals of longer
time-span can provide more information about pulsar origin.
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