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a b s t r a c t

A polytropic quark star model is suggested in order to establish a general framework in which theoretical
quark star models could be tested by observations. The key difference between polytropic quark stars and
the polytropic model studied previously for normal (i.e. non-quarkian) stars is related to two issues: (i) a
constant term representing the contribution of vacuum energy may be added in the energy density and
the pressure for a quark star, but not for a normal star; (ii) the quark star models with non-vanishing den-
sity at the stellar surface are not avoidable due to the strong interaction between quarks. The first one
implies that the vacuum inside a quark star is different from that outside, while the second one is rele-
vant to the effect of color confinement. The polytropic equations of state are stiffer than that derived in
conventional realistic models (e.g. the bag model) for quark matter, and pulsar-like stars calculated with
a polytropic equation of state could then have high maximum masses ð> 2M�Þ. Quark stars can also be
very low massive, and be still gravitationally stable even if the polytropic index, n, is greater than 3. All
these would result in different mass-radius relations, which could be tested by observations. In addition,
substantial strain energy would develop in a solid quark star during its accretion/spindown phase, and
could be high enough to take a star-quake. The energy released during star-quakes could be as high as
� 1047 ergs if the tangential pressure is � 10�6 higher than the radial one.

Crown Copyright � 2008 Published by Elsevier B.V. All rights reserved.
1. Introduction metric gravity, the equilibrium equation could be similar to the
It depends on the state of matter at supra-nuclear density to
model pulsar’s structure, which is unfortunately not certain due
to the difficulties in physics although some efforts have been made
for understanding the behavior of quantum chromo-dynamics
(QCD) at high density. Of particular interest is whether the density
in such compact stars could be high enough to result in unconfined
quarks (quark matter). Stars composed of quarks (and possible glu-
ons) as the dominant degrees of freedom are called quark stars, and
there is possible observational evidence that pulsar-like stars could
be quark stars (see reviews, e.g. [29,31,32]). But it is still a problem
to model a realistic quark star for our lack of knowledge about the
real state of quark matter.

The study of cold quark matter opens a unique window to
connect three active fields: particle physics, condensed matter
physics, and astrophysics. Many possible states (see, e.g. [2]) of
cold quark matter are proposed in effective QCD models as well
as in phenomenological models. An interesting suggestion is that
quark matter could be in a solid state [12,17,20,30]. Solid relativ-
istic stars are challenging astrophysicists since the stelar matter
can not be well approximately by a perfect fluid and the conven-
tional Tolman–Oppenheimer–Volkov (TOV) equation is thus not
applicable. Nevertheless, in case of static and spherically sym-
008 Published by Elsevier B.V. All

: +86 10 62765031.
TOV equation, by introducing a deviation between radial and
tangential pressures (see, e.g. [34]). However, one has also to
know the radial pressure, P, as a function of density q (and pos-
sible other parameters) in order to model a quark star in a solid
state.

No realistic relation of PðqÞ is available since no cold quark mat-
ter has been discovered experimentally and/or observationally
with certainty, although many modeled relations between P and
q are proposed in the literatures. Among the relations, a class of
linear equations of state, P ¼ jðq� q0Þ, is currently focused, with
two free parameters j and q0 (see, e.g. [25,35]), in the framework
of the bag model. Both relations derived in the bag model and in
the density-dependent quark model [3] can be regarded as special
cases of the linear relation of PðqÞ. Whatsoever, the linear equation
could not be adequate if possible quark-clustering occurs in cold
quark matter [30]. Such matter with clustered quarks could be in
a fluid state at high temperature but in a solid state at sufficient
low temperature. It should be worth noting that the interaction be-
tween quarks in a fireball with quarks and gluons is still very
strong (i.e. the strongly coupled quark-gluon plasma [26]), accord-
ing to recent achievements of relativistic heavy ion collision exper-
iments. Such a strong coupling may naturally render quarks
grouped in clusters. How can then one state a reliable P-q relation
in order to establish a framework in which theoretical stellar mod-
els could be tested by observations if the quark-clustering effect is
included?
rights reserved.
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Astronomers faced a similar problem when trying to model
non-quarkian normal stars (e.g. main sequent stars and white
dwarfs). A polytropic model with equation of state, P ¼ KqC

ðC ¼ 1þ 1=nÞ, had been extensively studied previously (see, e.g.
[4]) for main sequent stars as well as white dwarfs under the New-
tonian gravity. This model has also been extended under general
relativity [24,28]. The polytropic models are valuable because they
could help us to model stars composed of realistic matter, such as
ideal gas, photon gas, and degenerate fermi gas. Would it be possi-
ble for us to do a parallel investigation for quark stars? As dis-
cussed previously, QCD, which is still developing in low-energy
regime, should be involved to describe cold quark matter and the
equation of state of quark stars is then uncertain up-to-now. Fur-
thermore, it might be problematic to calculate the state of macro-
scopic quark stars in QCD because QCD is till a local theory [21].
Nonetheless, if quarks are clustered in quark stars where quarks
are coupled strongly, the state of cold quark matter might be
approximated phenomenologically by polytropic equations of
state, since one may draw naively an analogy between the clusters
in quark matter and the nuclei in normal matter.

Some authors had applied the polytropic equations of state to
model hybrid stars which have cores composed of unconfined
quarks [14,36]. However, their polytropic equations of state are
only used to describe normal phase (composed of normal baryons)
and mixed phase (composed of denser baryon matter); for the
quark phase inside the core, the equation of state is still the form
of the bag model. In this paper, we will apply for the first time
the polytropic equations of state for quark matter and calculate
the structures of quark stars, with different polytropic indices, n.
These stellar models could also be regarded as an extension to
the quark star models with linear equations of state.

We are going to model quark stars in two separated ways. (i)
The vacuum energy inside and outside quark matter is different.
As proposed by Bambi [5], quark stars could represent an labora-
tory to investigate the cosmological constant problem if some
compensate field exist to generate a constant-like term to compen-
sate the difference of vacuum energy, and the mass-radius curves
of quark stars will be different from the standard case. We gener-
alize Bambi’s idea to discuss generic polytropic equations of state.
(ii) The vacuum inside and outside of a quark star is assumed the
same, i.e. quark stars have no QCD vacuum energy. In both cases,
a key difference between polytropic quark star and normal star
models lies on the surface density qsur (qsur > 0 for the former
but qsur ¼ 0 for the latter), since a quark star could be bound not
only by gravity but also by additional strong interaction due to
the strong confinement between quarks. Analogously, a quark star
without QCD vacuum energy could be similar to an asteroid with a
sharp surface where the density is also none-zero. The non-zero
surface density is still natural in the case with the linear equation
of state, where the binding effect is represented by the bag con-
stant, B (and then qsur ¼ 4B).

The stability of a polytropic star depends also on the surface
density. It is well known that a normal star with zero surface den-
sity should be unstable if n > 3 in the Newtonian gravity, and that
the case of n ¼ 3 is still unstable in general relativity (see details in,
e.g. [24]). However, in the models we will demonstrate, a quark
star could still be stable even if n > 3.

The structures of related compact stars have been studied in
general relativity by some authors. Durgapal and Bannerji [6] de-
rived an analytical expression of mass-radius relation for isotropic
stars in general relativity, and Herrera et al. [9,11] analyzed a set of
solutions to the Einstein’s equations for anisotropic matter. It is
very interesting to model stars with anisotropic pressure for some
physical reasons [22,23,27]. Harko and Mak [8,15] derived an ana-
lytical expression of mass-radius relation for anisotropic stars in
general relativity, and discussed the constraints for the anisotropic
parameter. They had also presented an exact analytical solution of
the gravitational equations describing a static spherically symmet-
ric anisotropic quark matter distribution [16]. These authors did
not start with an equation of state, but studied the density and
pressure in a more general framework based on the energy-
momentum tensor. It is worth noting that the results obtained
by above authors are still parameter- and assumption-dependent,
even for the so-called exact solutions. We will alternatively study
the problem, with an explicit form of equation of state. We also
consider the case of anisotropic stars and compute the gravita-
tional energy released during quakes of solid quark stars, with a
parameter range given by Harko & Mak [8]. Numerical results show
that, if the tangential pressure which is slightly larger than the ra-
dial one changes abruptly, the gravitational energy released could
be high enough to power the supergiant flares observed from soft
c-ray repeaters.

This paper is arranged as follows. The details of polytropic mod-
el of quark stars of perfect and unperfect fluids, respectively, are
presented in Sections 2 and 3. The numerical results are shown
in Section 4. The paper is concluded in Section 4.

2. Stars of perfect fluid

2.1. Quark stars without QCD vacuum energy

If there is no difference between the vacuum inside and outside
of a quark star, the equation of state for a quark star is the standard
polytropic model, with a non-zero surface density, representing
the strong confinement between quarks. In this point of view,
quark stars could analogously be similar to asteroids: the electro-
magnetic force dominates over gravity in the later, while the
strong interaction can not be negligible in the former. Conse-
quently, both of those objects can have a sharp surface where
the density goes down to zero in a negligible small scale.

Stars of perfect fluid in general relativity were discussed by
Tooper [28], with an equation of state,

P ¼ KqC
g ; ð1Þ

q ¼ qgc2 þ nP; ð2Þ

where qg is the part of the mass density which satisfies a continuity
equation and is therefore conserved throughout the motion, and
C ¼ 1þ 1=n. In the static case with spherically symmetry, with
the space-time metric of the form,

ds2 ¼ emc2dt2 � r2ðd#2 þ sin2
#du2Þ � ekdr2; ð3Þ

the hydrostatic equilibrium condition is derived to be [19]

1� 2GMðrÞ=c2r
P þ qc2 r2 dP

dr
þ GMðrÞ

c2 þ 4pG
c4 r3P ¼ 0; ð4Þ

and

M ¼
Z R

0
q=c2 � 4pr2dr: ð5Þ

Similar to the Lane-Emden equation of normal stars, re-scale
density qg and radius r, as well as MðrÞ, by

qg ¼ qgch
n; r ¼ n=A; ð6Þ

MðrÞ ¼
4pqgc

A3 tðnÞ; ð7Þ

where

A2 ¼
4pGqgc

ðnþ 1Þac2 ; a ¼ Kq
1
n
gc

c2 ;

and qgc is the rest mass density at the center, we can then obtain
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Fig. 1. To compare the equations of state discussed, including the polytropic states with K ¼ 80 MeV (solid lines), K ¼ 0 (dashed lines), the corresponding non-relativistic
case with K ¼ 80 MeV (dash-dotted lines), K ¼ 0 (dotted lines), and that derived in the MIT bag model with the mass of strange quark ms ¼ 250 MeV and the strong coupling
constant as ¼ 0:6 (thin lines with dots), for a given surface density qsur ¼ 1:5q0. Here and in the following figures, q0 is the nuclear saturation density. It is evident that
polytropic equations of state are stiff.
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1� 2ðnþ 1Þat=n
1þ ðnþ 1Þah

n2h0 þ tþ an3hnþ1 ¼ 0; ð8Þ

t0 ¼ n2hnð1þ nahÞ; ð9Þ

with the initial conditions,

hð0Þ ¼ 1; tð0Þ ¼ 0: ð10Þ

The mass and radius of a star are evaluated at the point when
the density reaches the surface density. In general, the surface of
a star is defined by the position where the pressure is zero, or only
the radial pressure is zero [9,10] in the anisotropic case where the
radial pressure is different from the tangential one. In fact, the sur-
face in our calculations may not be the real physical surface, since
the pressure could not be zero there. However, this does not signif-
icantly affect the mass and radius we obtain, because a quark star
has a sharp edge, and the pressure and density decrease to zero in a
layer with thickness of few femto-meters.

2.2. Quark stars with QCD vacuum energy

The energy-momentum tensor has the form

Tlm ¼Tparticles
lm þTvacuum

lm : ð11Þ
For a constant vacuum energy, the energy-momentum tensor
can be written as

Tvacuum
lm ¼ Kglm; ð12Þ

and one finds

Pvacuum ¼Tvacuum
ii ¼ �K; ð13Þ

qvacuum ¼Tvacuum
00 ¼ K: ð14Þ

We can infer that no matter what forms the equations of state
for the particles are, the contribution of vacuum is of the above
form. Consequently, we write the equation of state as

P ¼ Kq1þ1
n

g �K; ð15Þ

q ¼ qgc2 þ nKq1þ1
n

g þK: ð16Þ

In this case, the density at surface (where pressure is zero)
should also be non-zero. It is worth noting that these general equa-
tions of state of Eqs. (15) and (16) could be simplified into a few
special ones: the form without QCD vacuum energy if K ¼ 0, the
linear (relativistic) form if qg ¼ 0, and the non-relativistic form if
the second term in Eq. (16) is neglected (see the next sub-section
for more discussions).
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Fig. 2. Mass-radius relations for different polytropic indices, n, with qsur ¼ 1:5q0. Solid lines are K ¼ 80 MeV fm�3, dashed lines are for K ¼ 0, dash-dotted lines are for non-
relativistic case with K ¼ 80 MeV fm�3, and dotted lines are for non-relativistic case with K ¼ 0.

1 An example similar to this non-relativistic equation of state is of the matter in
white dwarfs where the energy density is dominated by the rest mass of nuclei, while
the electron gas contributes to the pressure.
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The hydrostatic equilibrium conditions are also determined by
Eqs. (4) and (5). But in this case, we cannot derive differential
equations for density and radius, and can only numerically calcu-
late the structure of a quark star from the center to the surface
to obtain the mass and radius.

2.3. Comparison with MIT bag model

In the MIT bag model, quark matter are composed of massless
up and down quarks, massive strange quarks, and electrons.
Quarks are combined together by an extra pressure, denoted by
the bag constant B, which is the vacuum energy density similar
to the K-parameter in the polytropic model. For the comparison,
we apply the formulae given by Alcock [1] to calculate the equation
of state, with strange quark mass ms ¼ 250 MeV and the strong
coupling constant as ¼ 0:6 for indications.

Note that the K-parameter in Section 2.2 could be calculated in
the way of, from Eq. (15),

K ¼ K � q� 1þ1
nð Þ

sur ; ð17Þ

where qsur is the surface density, since at the surface the pressure is
zero. This density should be determined by the behavior of the ele-
mentary strong interaction. In the calculation, we assume that K
has the same value as the bag constant B of MIT bag model, and
choose the surface density, qsur ¼ 1:5q0, where q0 is the nuclear
matter density. The K-parameter could be larger if the quark self-
confinement effect is included, and the value determined by Eq.
(17) is the minimal and the maximum masses presented in Figs. 2
and 3 could also be higher. For the sake of simplicity, we suppose
a value of K from Eq. (17), and assume the K-parameter is the same
for both cases with and without vacuum energy under a same poly-
tropic index n. If quark-cluster inside a quark star are very massive,
the kinetic energy density could be negligible compared to the rest
mass energy density, i.e. the equation of state could be non-relativ-
istic, and the total energy density would include only the rest mass
energy density1 in Eq. (16).

The equations of state discussed above are shown in Fig. 1. An
obvious conclusion is that the equations of state of polytropic form
could be stiffer than that of the MIT bag model, especially in the
non-relativistic case. A stiffer equation of state would lead to a lar-
ger maximum mass of quark stars.

2.4. Gravitational energy in general relativity

The gravitational energy in general relativity was calculated by
Tooper [28]. In general relativity, the integrating of space volume
should be different from that in the Newtonian gravity due to
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the space-time curvature around a massive star. The proper en-
ergy, E0, is obtained by integrating the energy density over ele-
ments of proper spatial volume,

E0 ¼ E0g þ E0k; ð18Þ

where the rest energy, E0g , of the system and its microscopic kinetic
energy, E0k, are

E0g ¼ M0gc2 ¼ 4p
Z R

0
qgc2ek=2r2dr; ð19Þ

E0k ¼ 4p
Z R

0
nPek=2r2dr; ð20Þ

where k can be calculated by

e�k ¼ 1� 2GM
c2r

: ð21Þ

The total energy of a star with mass M ¼ MðRÞ is E ¼ Mc2, and
its gravitational energy, X, is the difference between the total en-
ergy and the proper energy,

X ¼ Mc2 � E0: ð22Þ
3. Stars with an anisotropic pressure

Fluid within inhomogeneous pressure is imperfect, and we will
consider only the case of spherical symmetry, that the tangential
and radial pressure are not equal. In this case the hydrostatic equi-
librium condition reads (e.g. [34])

1� 2GMðrÞ=c2r
P þ qc2 ðr2 dP

dr
� 2erpÞ þ GMðrÞ

c2 þ 4pG
c4 r3P ¼ 0; ð23Þ

where e is defined by P? ¼ ð1þ eÞP, and P is the radial pressure and
P? is the tangential one.

Combine the hydrostatic equilibrium condition and equation of
state, one can calculate the structures of quark stars with and with-
out QCD vacuum energy.

4. Numerical results

Based on the formulae presented in Section 2.1, the mass-radius
relations for various index, n, can be calculated. We are applying
the Runge–Kutta method of order 4 to solve the differential equa-
tions, until the density reaches the surface density. For the case in
Section 2.2, we numerically calculate from the center to the surface
and obtain then the mass and radius.
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It is worth noting that the non-zero surface density of quark
stars play an important role in the computation. This density
should be determined by the behavior of the elementary strong
interaction, and is then an uncertain parameter. In the calculation
as following, we choose the surface density, qsur ¼ 1:5q0, where q0

is the nuclear matter density.
In calculating the gravitational energy, we numerically inte-

grate from the center to the surface for both cases with and with-
out QCD vacuum energy.

4.1. Mass-radius relations for stars of perfect fluid

The mass-radius curves for both cases with and without QCD
vacuum energy are shown in Fig. 2. It is evident from the calcula-
tion that the maximum mass of quark star decreases as the index,
n, increases. This is understandable. A small n means a large C, and
the pressure is relatively lower for higher values of n. Lower pres-
sure should certainly support a lower mass of star.

It could have observational implications that the maximum
mass of quark stars with polytropic equations of state are larger
than that derived in conventional model. Recently the results of
19 years of Arecibo timing for two pulsars in the globular cluster
NGC 5904 (M5) had been reported by Freire et al. [7]. They con-
firmed that for one of the binary pulsars (M5B) the mass is
2:08� 0:19M� in 1r, and concluded that this mass for the pulsar
would exclude most ‘‘soft” equations of state for dense neutron
matter. However, a quark star in the polytropic model could be
more massive than in previously derived realistic models (e.g.
the MIT bag model) because of a stiffer equation of state, and the
maximum mass could be larger than 2M�. It is worth emphasizing
that the maximum mass of quark star depends on the value of K-
parameter. Although in this paper we derive its minimum value
under some assumptions, its real value is still uncertain. On this
point of view, even the pulsars of masses larger than 1:4M� have
been observed, the case of n ¼ 3 could not be ruled out because
the value of K could be larger than the value we use.

On the gravitational stability. A polytropic star, with a state equa-
tion of P / qC, supports itself against gravity by pressure, PR2

(note: the stellar gravity / M=R2 / qR). Certainly, a high pressure
(and thus large C or small n) is necessary for a gravitationally sta-
ble star, otherwise a star could be unstable due to strong gravity.
Actually, in the Newtonian gravity, a polytropic normal star (with
qsur ¼ 0) is gravitationally unstable if n > 3, but the star should be
still unstable if n ¼ 3 when the GR effect is included [24].

A polytropic quark star with non-zero surface density or with
QCD vacuum energy, however, can still be gravitationally stable
even if n P 3. A quark star with much low mass could be self-
bound dominantly, and the gravity is negligible (thus not being
gravitationally unstable). As the stellar mass increases, the gravita-
tional effect becomes more and more significant, and finally the
star could be gravitationally unstable when the mass increases be-
yond the maximum mass. In order to see the central density-
dependence of stability, the calculated mass-central density curves
are shown in Fig. 3.

Sound speed. From the P � q relation in Section 2.1, we can de-
rive the ratio of sound speed to speed of light, which cannot be
greater than 1,

vs

c

� �2
¼ dP

dq
¼ nþ 1

n
P

qþ P
6 1: ð24Þ

Similarly, also from the relation given in Section 2.2 we can
come to

vs

c

� �2
¼ dP

dq
¼ nþ 1

n
P þK
qþ P

6 1: ð25Þ
Both of the two inequations lead to

ð1� n2ÞKq
1
n
g 6 nc2: ð26Þ

The equation above holds if n P 1, that means that the causality
keeps for n P 1.

4.2. Gravitational energy released during a star-quake

Based on various manifestations of pulsar-like stars, a solid
state of cold quark matter was conjectured [30]. A solid stellar ob-
ject would inevitably result in star-quakes when strain energy
develops to a critical value, and a huge of gravitational and elastic
energies would then be released. One way to accumulate both
shear and bulk forces in a solid quark star is during an accretion
process: strain develops remarkably in massive stars, for which
the gravitational effect is not negligible. A solid star could addition-
ally support the accreted matter against gravity by these forces,
unless the forces become so strong that a star-quake occurs. This
is the so-called AIQ (Accretion-Induced star-Quake) mechanism
proposed previously [33,34], which might be responsible to the
bursts (even the supergiant flares) and glitches observed in soft
c-ray repeaters/anomalous X-ray pulsars (see a recent review by
[18]). In addition, the glitches of radio pulsars could also be the re-
sults of star-quakes [37].

How to calculate the energy released during an AIQ? Theoreti-
cally, anisotropic fluid stars could be introduced for, e.g. the pres-
ence of type 3A superfluid [13], different kind of phase transitions
[27], and pion condensation [23]. For the general relativistic con-
figurations, when the interactions between particles could be trea-
ted relativistically, the fluid could also be anisotropic [22]. Previous
theoretical results for anisotropic fluid, in a simple case with
spherical symmetry, could still be adaptable to estimate the AIQ-
released energy of a solid star.

Based on the analytical study of anisotropic matter, Harko and
Mak [8,15] discussed the constraints for the anisotropic parameter
defined in Section 3, e, and presented an exact analytical solution
for the gravitational equations of a static spherically symmetric
anisotropic quark matter star [16]. It is found that the e-value
could be as high as 10�2. Applying the formulae in Sections 2.4
and 3, we can obtain the gravitational energy released during a
star-quakes in both case with and without QCD vacuum energy,
for example, with n ¼ 1. The gravitational energy released for
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quark stars of linear equation of state with two different vacuum
energy has been calculated in Xu et al. [34]. We approximate that
the rest energy (corresponds to the total baryon mass) E0g does not
change during a star-quake, E0g ¼ M0c2, since the released energy
is much smaller than E0g .

The gravitational energy difference between stars with e–0 and
with e ¼ 0 are shown in Fig. 4. Three supergiant flares from soft c-
ray repeaters have been observed, with released photon energy
being order of � 1047 ergs. Our numerical results imply that for
all the parameters we chosen, the released energy could be as high
as the observed.

5. Conclusions and discussions

Because of the difficulty to obtain a realistic state equation of
cold quark matter at a few nuclear densities, we have tried to apply
polytropic equations of state to model quark stars in this paper.
The polytropic equations of state to quark stars are studied in
two separated cases: the vacuum inside and outside quark matter
is the same or not. In addition, the quark-clustering could lead to
the non-relativistic equation of state. The differences between
the those cases could be significant in the mass-radius relations,
and may be tested by observations. It could additionally provide
a way to probe the properties of QCD vacuum.

The polytropic equations of state are stiffer than that derived in
previous realistic models, so they could lead to more massive
quark stars with masses > 2M�. Consequently, even when some
massive pulsars have been observed, it still can not rule out the
possibility that pulsar-like stars are quark stars. Though a normal
star with zero surface density can only be gravitationally stable if
the polytropic index n < 3, a quark star with non-zero surface den-
sity could still be stable even if n P 3. A solid quark star may break
if its strain energy develops to a critical value, and we calculate the
gravitational energy released during quakes and find that the en-
ergy could be as high as � 1047 ergs if the anisotropic parameter,
e, could be order of 10�6. Such a huge of energy would be liberated
during an AIQ (accretion-induced star-quake) process, to be prob-
ably responsible to the bursts and glitches observed in soft c-ray
repeaters/anomalous X-ray pulsars. The general relativity effect
has been included to simulate the polytropic quark stars.

The nature of pulsars is unfortunately still a matter of contro-
versy, even more than 40 years after the discovery of pulsar.
Although quark stars cannot be ruled out, both theoretically and
observationally, and pulsars are potential idea laboratories to
study the elementary strong interaction, we are lacking a general
framework in which theoretical stellar models could be tested by
observations. Polytropic quark star model is the one we try to
establish. Future advanced observations may help to constrain
the uncertain parameters, e.g. the polytropic index n, the coeffi-
cient K, the surface density qsur, and even the vacuum energy K.

One of the daunting challenges nowadays is to understand the
fundamental strong interaction between quarks, especially the
QCD in the low-energy limit, since the coupling is asymptotically
free in the limit of high-energy. The state of cold matter at a few
nuclear densities is still an unsolved problem in the low-energy
QCD. In effective QCD models, BCS-type quark pairing was pro-
posed to form at a Fermi surface of cold quark matter, and the
shear moduli of the rigid crystalline color super-conducting quark
matter could be 20–1000 times larger than those of neutron star
crusts [17]. However, quark-clusters are phenomenologically sug-
gested to form in cold quark matter [30]. The state of such cold
quark matter might be approximated by polytropic equations of
state since one may draw naively an analogy between the clusters
in quark matter and the nuclei in normal matter. Certainly, it
would be very interesting to observationally distinguish between
those two kinds of solid quark matter.
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