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Lennard-Jones quark matter and massive quark stars
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ABSTRACT
Quark clustering could occur in cold quark matter because of the strong coupling between
quarks at realistic baryon densities of compact stars. Although one may still not be able to
calculate this conjectured matter from the first principles, the intercluster interaction might
be analogized to the interaction between inert molecules. Cold quark matter would then
crystallize in a solid state if the intercluster potential is deep enough to trap the clusters in the
wells. We apply the Lennard-Jones potential to describe the intercluster potential and derive
the equations of state, which are stiffer than those derived in conventional models (e.g. MIT
bag model). If quark stars are composed of the Lennard-Jones matter, they could have high
maximum masses (>2 M�) as well as very low masses (<10−3 M�). These features could
be tested by observations.
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1 I N T RO D U C T I O N

To understand the nature of pulsars, we need to know the state of
cold quark matter, in which the dominant degree of freedom are
quarks, and their Fermi energy is much larger than their thermal
energy. However, this is a difficult task because of (i) the non-
perturbative effect of the strong interaction between quarks at low
energy scale and (ii) the many-body problem of vast assemblies of
interacting particles.

On the one hand, some efforts have been made to understand the
behaviour of quantum chromo-dynamics (QCD) at high density,
among which a colour super-conductivity (CSC) state is currently
focused on perturbative QCD as well as on QCD-based effective
models (e.g. Alford et al. 2008). On the other hand, it is phe-
nomenologically conjectured that astrophysical cold quark matter
could be in a solid state (Xu 2003), since the strong interaction
may render quarks grouped in clusters, and the ground state of
realistic quark matter might not be that of the Fermi gas (see a
recent discussion given by Xu 2009). If the residual interaction
between quark clusters is stronger than their kinetic energy, each
quark cluster could be trapped in the potential well and cold quark
matter will be in a solid state. Solid quark stars still cannot be ruled
out in both astrophysics and particle physics (Horvath 2005; Owen
2005). Additionally, there is evidence that the interaction between
quarks is very strong in hot quark-gluon plasma (i.e. the strongly
coupled quark-gluon plasma; Shuryak 2009) according to the re-
cent achievements of relativistic heavy ion collision experiments.
When the temperature goes down, it is reasonable to conjecture that
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the interaction between quarks should be stronger than in the hot
quark-gluon plasma.

Because of the difficulty in obtaining a realistic state equation of
cold quark matter at a few nuclear densities, we try to apply some
phenomenological models, which would have some implications
on the properties of QCD at low energy scales if the astronomical
observations can provide us with some limitations on such models.
In our previous paper (Lai & Xu 2009), a polytropic quark star model
has been suggested in order to establish a general framework in
which theoretical quark star models could be tested by observations.
This model can help us understand the observed masses of pulsars
and the energy released during some extreme bursts; however, this
is a phenomenological model and does not include the form of
interaction between quarks. To calculate the interaction between
quarks and to predict the state of matter for quark stars by QCD
calculations are difficult tasks; however, it is still meaningful for us
to consider some models to explore the properties of quarks at the
low energy scale.

We can compare the interaction between quark clusters with the
interaction between inert molecules. A single quark cluster inside
a quark star is assumed to be colourless, just like each molecule
in a bulk of inert gas is electric neutral. The interaction potential
between two inert gas molecules is well described by the Lennard-
Jones potential (Lennard-Jones 1924)

u(r) = 4U0

[( r0

r

)12
−

( r0

r

)6
]

, (1)

where U 0 is the depth of the potential and r0 can be considered as
the range of interaction. This form of potential has the property of
short-distance repulsion and long-distance attraction. We assume
that the interaction between the quark clusters in quark stars can
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also be described by the form of the Lennard-Jones potential.1

If the intercluster potential is deep enough to trap the clusters in
the potential wells, the quark matter would crystallize and form
solid quark stars. Under such potential, we can get the equation of
state for solid quark stars, where the pressure comes from both the
intercluster potential and lattice vibrations. Because the chromo-
interaction is stronger than the electromagnetic interaction that is
responsible for the intermolecular forces, the values of parameters,
U 0 and r0 used in the cold quark matter, should be different from
that in the inert gas, and should be determined in the context of
quark stars.

The model of quark stars composed of the Lennard-Jones matter
is much different from conventional models (e.g. MIT bag model)
in which the ground state is of the Fermi gas. In the former case,
the quark clusters are non-relativistic particles, whereas in the latter
case quarks are relativistic particles. Consequently, the equations of
state in these two kinds of models are different, and we find that the
Lennard-Jones model has stiffer equations of state, which lead to
higher maximum masses for quark stars. Certainly, quark stars can
have a very low mass (<10−3 M�) due to self colour interaction.
On the other hand, we find that under some reasonable values of
parameters, a quark star could also be very massive (>2 M�).

This Letter is arranged as follows. The details of lattice thermo-
dynamics are listed in Section 2. The forms of equations of state
are given in Section 3, including the comparison with the MIT
bag model, and we show the corresponding mass–radius curves in
Section 4. We make conclusions and discussions in Section 5.

2 L AT T I C E T H E R M O DY NA M I C S

For an intercluster potential which is deep enough to trap the clusters
in the potential wells, the quark matter would crystallize to get lower
energy and form solid quark stars. In this section, we use the results
in classical solid physics to discuss the properties of crystallized
cold quark matter.

2.1 The intercluster potential

Like the inert gas, the interaction potential u between two quark clus-
ters as the function of their distance r is described by the Lennard-
Jones potential (equation 1). Let us consider a system containing N
clusters with volume V . The total interaction potential is

U = 1

2

∑
i

∑
j �=i

u(rij ), (2)

and if we ignore the surface tension, we get

U = N

2

∑
j �=i

u(rij ) = N

2

∑
j �=i

{
4U0

[(
r0

rij

)12

−
(

r0

rij

)6
]}

. (3)

The lattice structure of cold quark matter is unknown, and we adopt
the simple-cubic structure. The cold quark matter may have other

1 The interaction between nuclei can be described by the σ − ω model
(Walecka 1974), which is also characterized by the short-distance repulsion
and long-distance attraction. Recently, the nucleon–nucleon potential has
been studied by lattice QCD simulations (Ishii, Aoki & Hatsuda 2007), and
they also derive a strong repulsive core at short distances. The interaction
between quark clusters in cold quark matter could also have long-distance
attraction and short-distance repulsion if scale and vector mesons contribute
there. We note that this short-distance repulsion is essential to reproduce a
stiff equation of state in our model.

kinds of structures, but that will not make much difference at least
quantitatively. If the nearest distance between two quark clusters is
R, then the total interaction potential of N quark clusters is

U (R) = 2NU0

[
A12

( r0

R

)12
− A6

( r0

R

)6
]

, (4)

where A12 = 6.2 and A6 = 8.4. In the simple-cubic structure, the
number density of clusters n is

n = R−3, (5)

so

U (R) = 2NU0

(
A12r

12
0 n4 − A6r

6
0 n2

)
, (6)

and the potential energy density is

εp = 2U0

(
A12r

12
0 n5 − A6r

6
0 n3

)
. (7)

2.2 Lattice vibrations

Consider a system of volume V containing N quark clusters. Each
quark cluster in the crystal lattice undergoes a three-dimensional
vibration about its lattice site. Performing a normal-mode analysis
in which the vibrations of the lattice are decomposed into 3N inde-
pendent normal modes of vibrations, the total lattice vibration is a
superposition of these 3N decoupled vibrations.

For cold quark matter, the thermal vibration can be neglected
compared to the zero-point energy of phonon, so the average energy
of an individual mode of vibration with frequency ωj is

Ej = 1

2
�ωj . (8)

Using the Debye approximation, at low temperature, the thermo-
dynamic properties of crystal lattice are mainly determined by the
long-wavelength sound waves. The propagation of the wave can
be decomposed into one longitude mode with velocity v‖ and two
transverse modes with velocity v⊥. The total velocity v has the
relation

1

v3
= 1

3

(
1

v3
‖

+ 2

v3
⊥

)
, (9)

and the total energy of the 3N vibrations is

E =
∫ ωm

0

1

2
�ωf (ω) dω, (10)

where f (ω) dω is the number of modes in the interval from ω to ω +
dω, and ωm is the maximum frequency related to the non-continuous
structure of the solid, and is determined by

ωm = v(6π2n)1/3. (11)

Under the condition of zero temperature, the integration can be done
and the total energy of the crystal vibrations becomes

E = 9V

8
(6π2)

1
3 �vn

4
3 , (12)

so the energy density of the lattice vibration is

εL = 9

8
(6π2)

1
3 �vn

4
3 . (13)
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3 EQUATION OF STATE FOR QUARK STARS

3.1 Quark stars composed of the Lennard-Jones matter

The total energy density for cold quark matter is

εq = εp + εL + nmcc
2

= 2U0

(
A12r

12
0 n5 − A6r

6
0 n3

)
+9

8
(6π2)

1
3 �vn

4
3 + nmcc

2, (14)

where mc is the mass of each quark cluster. The pressure can be
derived as

Pq = n2 d(εq/n)

dn

= 4U0

(
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8
(6π2)

1
3 �vn

4
3 . (15)

Apart from quarks, there are electrons in quark matter. In the MIT
bag model, the number of electrons per baryon N e/A is found for
different strange quarks mass ms and coupling constant αs (Farhi
& Jaffe 1984). In their results, when αs = 0.3, N e/A is less than
10−4; a larger αs means a smaller N e/A at a fixed ms, because
the interaction between quarks will lead to more strange quarks
and consequently less electrons. In our model, we also consider the
strong interaction between quarks as well as between quark clusters,
and consequently the required number of electrons per baryon to
guarantee the neutrality should also be very small. Although at
the present stage we have not got the exact value for the number
density of electrons, we assume that N e/A is less than 10−4. We
find that even at this value, the pressure of the degenerate electrons
is negligible compared to the pressure of quarks. Therefore, we
neglect the contribution of electrons to the equation of state. Then,
the equation of state for quark stars is

P = Pq, (16)

ρ = εq/c
2. (17)

3.2 Parameters

Up to now, there are a couple of parameters in the equation of state,
and in this section we will show how to determine them.

(1) The long-wavelength sound speed v for lattice vibration. For
the extremely relativistic systems, the sound velocity is 1/

√
3, and

in general it will be less than 1/
√

3. We find that the equation of
state does not change much when v goes from the velocity of light
c to 10−5c, so in our calculations we set v = c/3.

(2) The mass of quarks. Quark stars are composed entirely of
deconfined light quarks (up, down and strange quarks), the so-
called strange stars. Because the deconfined phase and the chiral-
restoration phase transitions might not occur simultaneously in the
QCD phase diagram, we give each quark a constituent mass and
assume that it is one-third of the nuclear mass.

(3) The number of quarks in one cluster Nq. Quarks are fermions
and have three flavour (up, down and strange) degrees of freedom
and three colour degrees of freedom. Pauli’s exclusion principle
tells us that if in the inner space quarks are exchange-asymmetric,
they are exchange-symmetric in position space and they have a ten-
dency to condensate in position space. We therefore conjecture the

existence of quark clusters in quark matter and leave the number of
quarks in one cluster, Nq, as a free parameter. An 18-quark cluster,
called quark-alpha (Michel 1988), could be completely asymmet-
ric in spin, flavour and colour space, so in our calculation we set
Nq = 18, and we also set Nq = 3. On the other hand, it has been con-
jectured that strongly interacting matter at high densities and low
temperatures might be in a ‘quarkyonic’ state, which also contains
three quarks in one cluster, and is characterized by chiral symmetry
and confinement (McLerran & Pisarski 2007; Blaschke, Sandin &
Klahn 2008). However, in our model, the state is characterized by
chiral symmetry breaking and deconfinement.

(4) The depth of the potential U 0. Given the density of quark
matter ρ and the mass of each individual quark from Heisenberg’s
uncertainty relation, we can approximate the kinetic energy of one
cluster as

Ek ∼ 1 MeV

(
ρ

ρ0

) 2
3
(

Nq

18

)− 5
3

, (18)

where ρ0 is the nuclear matter density. To get the quarks trapped
in the potential wells to form a lattice structure, U 0 should be
larger than the kinetic energy of quarks. Because of the strong
interaction between quarks, we adopt U0 = 50 and 100 MeV to do
the calculations.

(5) The range of the action r0. Since a quark star could be bound
not only by gravity but also by strong interaction due to the con-
finement between quarks, the number density of quarks on a quark
star surface ρs is non-zero. For a given ρs, we can get r0 at the sur-
face where the pressure is zero. We choose ρs as two times nuclear
matter densities and get the value of r0 accordingly, which is found
in the range from about 1 to 3 fm.

When U 0 and r0 are given, the intercluster potential equation (1)
is fixed. One should note that it describes the interaction between
only two clusters; if we consider other clusters’ influences, a cluster
will always be in the minimal potential state. When the cluster
deviates from the equilibrium position, it will be pulled back due to
the stronger repulsion from one side, just as the case of a chain of
springs.

3.3 Comparison with the MIT bag model

In the MIT bag model, quark matter is composed of massless up and
down quarks, massive strange quarks and a few electrons. Quarks
are combined together by an extra pressure, denoted by the bag
constant B. For the comparison, we apply the formulae given by
Alcock, Farhi & Olinto (1986) to calculate the equation of state, with
strange quark mass ms = 100 MeV, the strong coupling constant
αs = 0.3 and the bag constant B = 60 MeV/fm−3 (e.g. Zdunik
2000). The comparison of equation of state in our model and in the
MIT bag model is shown in Fig. 1.

In our model, quarks are grouped in clusters and these clusters
are non-relativistic particles. If the intercluster potential can be de-
scribed as the Lennard-Jones form, the equation of state can be
very stiff, because at a small intercluster distance (i.e. the number
density is large enough), there is a very strong repulsion. However,
in the MIT bag model quarks are relativistic particles (at least for
up and down quarks). For a relativistic system, the pressure is pro-
portional to the energy density, so it cannot have stiff equation of
state.
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Figure 1. Comparison of the equations of state with Nq = 3, including
U0 = 50 MeV (blue solid lines) and U0 = 100 MeV (blue dashed lines),
and the corresponding case Nq = 18 with U0 = 50 MeV (red dash–dotted
lines) and U0 = 100 MeV (red dotted lines), and that derived in the MIT
bag model with the mass of strange quark ms = 100 MeV and the strong
coupling constant αs = 0.3 and bag constant B = 60 MeV/fm−3 (thin lines),
for a given surface density ρs = 2ρ0. Here and in the following figures, ρ0

is the nuclear saturation density.

3.4 The speed of sound

The adiabatic sound speed is defined as

cs =
√

dP/dρ. (19)

If we use the equation of state in our model, the speed of sound
will exceed the speed of light not far away from the surface of a
quark star. It seems to contradict the relativity that signals cannot
propagate faster than light.

The possibility of the speed of sound exceeding the speed of
light in ultradense matter has been discussed previously (Bludman
& Ruderman 1968), and was considered a consequence of using a
classical potential (i.e. a kind of action at a distance). The physical
reasons of apparent superluminal speed of sound have also been
analysed (Caporaso & Brecher 1979). The authors argued that the
adiabatic sound speed can exceed the speed of light, yet signals
propagate at a speed less than c.

One reason is that the P (ρ) relation arises from a static calcula-
tion, ignoring the dynamics of the medium. The notion that cs is a
signal propagation speed is a carry-over from Newtonian hydrody-
namics, in which one assumes infinite interaction speed but finite
temperature, so the static and dynamic calculations give the same
result. On the other hand, if one assumes finite interaction speed and
zero temperature, the adiabatic sound speed is not a dynamically
meaningful speed, but only a measure of the local stiffness. Another
reason is that a lattice does not have an infinite range of allowed
frequencies of vibration, but a signal should contain components at
all frequencies. Therefore, the adiabatic sound speed is not capable
of giving the velocity of propagation of disturbances.

In our model, although we have not made it explicit how the par-
ticles interact with each other, we may assume that the interaction is
mediated by some particles with non-zero masses, and the interac-
tion does not propagate instantaneously. We have also used the low
frequency approximation to calculate the lattice energy. Therefore,
we could conclude that in our model the signal cannot propagate
faster than light.

Whether the equation of state of cold quark matter can be so stiff
that the adiabatic speed of sound is larger than c could still be an
open question. However, in our present Letter, we do not limit the

Figure 2. The mass–radius and mass–central density (rest-mass energy
density) curves, in the case Nq = 3, including U0 = 50 MeV (blue solid
lines) and U0 = 100 MeV (blue dashed lines), and the corresponding case
Nq = 18 with U0 = 50 MeV (red dash–dotted lines) and U0 = 100 MeV
(red dotted lines), for a given surface density ρs = 2ρ0.

adiabatic sound speed and only treat it as a measurement of the
stiffness of the equation of state.

4 MASSES AND RADI I

From the equations of state, we can get the mass–radius and mass–
central density curves (the central density only includes the rest-
mass energy density), as shown in Fig. 2.

Because of stiffer equations of state, which we have discussed in
Section 3, the maximum masses of quark stars in our model could
be higher. In Fig. 2, we can see that (i) a deeper potential well U 0

means a higher maximum mass and (ii) if there are more quarks in
a quark cluster, the maximum mass of a quark star will be lower.

A stiffer equation of state leading to a higher maximum mass
could have very important astrophysical implications. Although
we could still obtain high maximum masses under the MIT bag
model by choosing suitable parameters (Zdunik et al. 2000), with
a more realistic equation of state in the density-dependent quark
mass model (e.g. Dey et al. 1998) it is very difficult to reach a high
enough maximum stellar mass, which was considered as possible
negative evidence for quark stars (Cottam, Paerels & Mendez 2002).
Some recent observations have indicated some massive (∼2 M�)
pulsars (e.g. Freire et al. 2008); however, because of the uncertain
inclination of the binary systems, we are still not sure about the real
mass. Though we have not definitely detected any pulsar whose
mass is higher than 2 M� up to now, the Lennard-Jones quark
star model could be supported if massive pulsars (> 2 M�) are
discovered in the future. Moreover, a high maximum mass for quark
stars might be helpful for us to understand the mass-distribution of
stellar-mass black holes (Bailyn et al. 1998), since a compact star
with a high mass (e.g. ∼5 M�) could still be stable in our model
presented.

5 C O N C L U S I O N S A N D D I S C U S S I O N S

In cold quark matter at realistic baryon densities of compact stars
(with an average value of ∼2−3ρ0), the interaction between quarks
is so strong that they would condensate in position space to form
quark clusters. Like classical solids, if the intercluster potential is
deep enough to trap the clusters in the potential wells, the quark
matter would crystallize and form solid quark stars. This picture of
quark stars is different from the one in which quarks form Cooper
pairs and quark stars are consequently colour super-conductive.
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In this Letter, we argue that quarks in quark stars are grouped
in clusters and the quark clusters form simple-cubic structure. We
applied the Lennard-Jones potential to describe the interaction po-
tential between quark clusters. The parameters such as the depth
of potential U 0 (50 and 100 MeV) and the range of interaction r0

(about 1 to 3 fm) are given by the physical context of quark stars.
Under such equations of state, the masses and radii of quark stars
are derived, and we find that the mass of a quark star can be higher
than 2 M�.

It is surely interesting to experimentally or observationally dis-
tinguish between our solid quark star model and other models for
quark stars, e.g. the CSC state. Starquakes could naturally occur in
solid quark stars and the observations of pulsar glitches and soft
γ -ray repeater (SGR) giant flares could qualitatively be reproduced
when the solid matter breaks (Zhou et al. 2004; Xu, Tao & Yang
2006); moreover, the post-glitch recoveries in the solid quark star
model and the CSC model would be different. Additionally, be-
cause the solid quark star model depends on quark clustering, the
interaction behaviours between quarks could be tested in sQGP
(strongly coupled quark-gluon plasma; see Shuryak 2009) by the
Large Hadron Collider (LHC) and/or Facility for Antiproton and
Ion Research (FAIR) experiments.

The study of compact stars involves two kinds of challenges:
particle physics and many-body physics. Nevertheless, if we know
about the properties of compact stars from observations, we can get
information on the elementary physics. Take the model we discussed
in this Letter as an example. If we get the masses and radii of some
pulsars from accurate enough observations, we can put limits on
the parameters such as potential well depth U 0, interaction range
r0 and the number of quarks that condensate in position space to
form a cluster, which could help us to explore the strong interaction
between quarks. Although the state of cold quark matter at a few
nuclear densities is still an unsolved problem in low-energy QCD,
it would be helpful for us to use pulsars as idea laboratories to study
the nature of the strong interaction.

In general, stars are equilibrium bodies with pressure against
gravity. The thermal and radiation pressure dominates in main se-
quent stars, while degenerate pressure of Fermions, originated from
Pauli’s principle, dominates in Fermion stars (e.g. white dwarfs).
For solid quark stars in the models presented in this Letter, the
pressure is related to the increase in both potential and lattice vibra-
tion energies as the stellar quark matter contracts. The degenerate
pressure might be negligible there.
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