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ABSTRACT

It is found that pulsar radiation altitude ratios between different radio frequencies are weak-dependent on the
inclination angle α. This is proved via series expansion techniques and illustrated by using pulsar examples of
PSR B0329+54, B1508+55, B2016+28, B1133+16, and B2319+60. It is emphasized that this α-weak-dependent
radiation altitude ratio offers a good tool to test pulsar radiation models. We use the measured altitude ratios to
constrain the parameter space for the Ruderman–Sutherland model and the inverse Compton scattering model.
It is found that the Ruderman–Sutherland model is not compatible with the measured altitude ratios, while
the results are compatible with the inverse Compton scattering model. The potential possible applications
of this method in studying pulsar timing and in studying pulsar high energy radiation are also discussed.
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1. INTRODUCTION

Measuring the altitudes of radiation location is of great im-
portance for the research of the pulsar radiation mechanism as
well as research for physical processes in a pulsar magneto-
sphere. At present, there are three kinds of methods to mea-
sure the altitudes. The first group of methods uses the informa-
tion of relative phase shift between pulse components or uses
phase shift between polarization features and pulse components
(Blaskiewicz et al. 1991; Phillips 1992; Gangadhara & Gupta
2001; Gangadhara 2005; Johnston et al. 2007). The second
group of methods uses the geometrical properties of the radia-
tion beam to measure the altitudes (Cordes 1978; Gil & Kijak
1993; Kijak & Gil 1997). The third group of methods uses syn-
thetic information, including geometrical, temporal and spatial
information, to calculate the radiation locations (Wang et al.
2006). The inclination angle is a basic parameter in measuring
altitude. It can be obtained by fitting the linear polarization po-
sition angle curve with a rotating vector model (hereafter RVM;
Radhakrishnan & Cooke 1969) or by using some statistical re-
lations (Lyne & Manchester 1988; Rankin 1983). But due to the
following two main issues, uncertainty exists in the measured
inclination angle of radio pulsars, hence uncertainty is inevitable
in the induced absolute emission altitude. (1) The RVM does not
work well for pulsars with lower degree of polarization or for
pulsars with complex polarization structure (Wang et al. 2006).
(2) The statistical relation between the angular width of the radio
radiation cone and the period of the pulsar is of large scattering.

Although the uncertainty of the inclination angle (α) will
lead to uncertainties when measuring the absolute radiation
altitudes of pulsar, we will show that the ratio between two
radiation altitudes of two different frequencies are insensitive
with respect to the pulsar inclination angle, if the pulsars have
steep slopes in linear polarization position angle curves. For
such pulsars, the ratio between two radiation altitudes is a better
measurable quantity than absolute radiation altitude. This α-
weak-dependence ratio validates the measurement of radius-
to-frequency mapping (RFM) index, because measuring RFM
index, in fact, only involves measuring the ratios between
radiation altitudes. We choose five pulsars (PSR B0329+54,
B1508+55, B2016+28, B1133+16, and B2319+60) to show
such invariance and to illustrate how to use the ratio to test

pulsar radiation models, which predict different RFM (Kijak &
Gil 2003). Here, the Ruderman–Sutherland model (Ruderman
& Sutherland 1975) and the inverse Compton scattering model
are examined using altitude ratio.

The Ruderman–Sutherland model (RS model; Ruderman &
Sutherland 1975) is a classical radiation model for radio pulsars.
In the RS model, an inner vacuum polar magnetospheric gap is
formed, where an electric field along the magnetic field lines
is produced. The gap continuously breaks down by forming
electron–positron pairs. The primary pairs and secondary pairs
lead to coherent microwave radiation due to the curvature
radiation process. The radiation altitude r for the RS model
is r ∝ ω−2/3, where ω is the radio wave frequency. We
will show in Section 3 that such a RFM of the RS model is
incompatible with the altitude ratios of the pulsars we selected.
An inverse Compton scattering (ICS) model for radio pulsars
has been proposed for nearly 20 years (Qiao 1988; Qiao &
Lin 1998; Xu et al. 2000; Qiao et al. 2001). The pulsar
radiation beam morphology, radio spectrum, luminosity, and
polarization properties of pulsar are explained in the ICS model.
Furthermore, the ICS model also predicts the relation between
the radiation altitude and the frequency. There are three free
parameters in the ICS model, the initial radio wave frequency
ω0, the initial Lorentz factor γ0, and the energy loss rate ξ . In this
paper, we have constrained the parameter space for γ0 and ξ0 of
the ICS model using the altitude ratios of the pulsar samples.

This paper is organized as follows: in Section 2, the method to
measure the ratio between two radiation altitudes is presented;
applications for the RS model and the ICS model are given in
Section 3; conclusions and discussions are made in Section 4.

2. ACCURATE MEASUREMENT FOR THE RATIO
BETWEEN RADIATION ALTITUDES

2.1. Geometrical Method

In this section, the method to calculate the radiation altitudes
is described. It is shown why the ratio between two radiation
altitudes is nearly invariant with respect to the changing of the
inclination angle α, if the slope κ of the linear polarization
position angle curve is steep. We adopt notation for geometrical
parameters, which are defined in Table 1 and illustrated in
Figure 1. More details of deriving the following equations are
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Figure 1. Three-dimensional sketch for the geometrical configuration of the magnetic field line and emission beams. In the left panel, the rectangular gray plane
indicates the Ω–μ plane, where Ω and μ are the rotational axis and the magnetic axis, respectively. The magnetic field lines “A” are in front of the Ω–μ plane and
magnetic field lines “B” are in the back of the Ω–μ plane. “Q” indicates the radiation source, which is located at altitude r from the pulsar center. θ denotes the polar
angle of the radiation source in the magnetic coordinate. θμ is the half of the beam angular width. RLC is the radius of the light cylinder for a given magnetic field
line, on which the maximal radius is Re from the pulsar center. For an observer, φ is the azimuthal angle in the laboratory frame. The right panel shows two radiation
beams coming from positions Q1 and Q2, respectively. ϕ is the azimuthal angle in the magnetic coordinate.

Table 1
Symbols Used in Calculation

Symbol Meaning

p Period of the pulsar
R Pulsar radius
ψ Polarization position angle
φ Azimuthal angle in laboratory frame
θμ Half width of the radiation beam
Δφ Half pulse width of the pulse profile
θ Polar angle in the magnetic coordinate
ϕ Azimuthal angle in the magnetic coordinate
RLC Radius of the light cylinder
Re Maximal radius of a given magnetic field line
θM Polar angle in the magnetic coordinate

for the light tangential point of the magnetic line to cylinder
η Ratio between two polar angles of radiation sources
η Average of η

ζ Ratio between two altitudes of radiation sources
ζ Average of ζ

c Light speed
α Inclination angle
β Impact angle, the angle between the line of sight and the magnetic axis

given in the Appendix. The basic assumptions used throughout
the paper are as follows. (1) The pulsar magnetic field is
dipolar. (2) The radio emission directions are parallel to the
local magnetic field. (3) The RVM is applicable to calculate
the maximal slope of the linear polarization position angle
curve.

The maximal slope κ of the linear polarization position
angle curve can be measured from the radio polarization data
(Radhakrishnan & Cooke 1969; Lyne & Manchester 1988). This
maximal slope κ gives a relation between the inclination angle
α and the impact angle β (Lyne & Manchester 1988) as

κ ≡ dψ

dφ

∣∣∣∣
max

= sin α

sin β
. (1)

Given α and β, assuming that the radiation beam is symmetric
with respect to the magnetic axis, the half angular beam width

θμ relates to Δφ by Gil et al. (1984) and Lyne & Manchester
(1988):

sin2

(
θμ

2

)
= sin2

(
Δφ

2

)
sin α sin(α + β) + sin2

(
β

2

)
, (2)

where 2Δφ is the total pulse width measured at a 10% pulse
amplitude level (see Equation (22) for details).

Assuming the dipole magnetic field configuration, the radi-
ation coming from the location with magnetic polar angle θ
forms the radiation beam with half angular beam width of θμ

given (Qiao et al. 2001)

tan θμ = 3 sin 2θ

1 + 3 cos 2θ
(3)

or inversely

θ = 1

2
arccos

[√
sin4 θμ − 10 sin2 θμ + 9 − sin2 θμ

3

]
. (4)

The radiation beam is observed by an observer with viewing
angle α + β, then the azimuth angle of the boundary field line
reads

ϕ = arccos

[
cos α cos θμ − cos(α + β)

sin α sin θμ

]
, (5)

where ϕ is defined in the magnetic polar coordinate.
Now we have complete angular information about where the

radiation comes from, which is given by the angular coordinates
{θ, ϕ}. The θ denotes the polar angle of radiation location,
while the ϕ denotes the azimuthal angle of radiation location
in the magnetic polar coordinate. We now turn to calculate
the radiation altitude. In the dipolar field approximation, the
radiation altitude is r = Re sin2 θ , where Re can be calculated
for a field line with φ by the following equation:

Re = RLC

sin2 θM

√
1 − (cos α cos θM − sin α sin θM cos ϕ)2

, (6)
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Table 2
Adopted Parameters for PSR B0329+54, B1508+55, B2016+28, B1133+16, and B2319+60

PSR Period (s) κ 2Δφ0.408 GHz (deg) 2Δφ1.4 GHz (deg) 2Δφ4.8 GHz (deg)

PSR B0329+54 0.715 −10.0 28.82 ± 0.06 28.3 ± 0.2 25.17 ± 0.03
PSR B1508+55 0.740 −28.0 14.57 ± 0.3 14.47 ± 0.05 10.1 ± 0.4
PSR B2016+28 0.558 6.0 14.65 ± 0.02 16.31 ± 0.05 15.1 ± 0.1
PSR B1133+16 1.188 12.0 13.20 ± 0.05 12.00 ± 0.03 9.64 ± 0.03
PSR B2319+60 0.717 9.0 24.83 ± 0.3 21.6 ± 0.2 19.60 ± 0.05

Notes. The periods and κ come from Lyne & Manchester (1988). The error of κ is assumed to be 10% throughout the paper, as the original data did
not include the discussion of error (Lyne & Manchester 1988). The 2Δφ0.408 GHz, 2Δφ1.4 GHz, and 2Δφ4.8 GHz are the pulse widths corresponding to
408 MHz, 1408 MHz, and 4850 MHz observation for PSR B0329+54, B2016+28, B1133+16, and B2319+60. For PSR B1508+55, the 4.8 GHz data
correspond to 4750 MHz observation. All these widths are measured down to a 10% intensity level by Gaussian fitting. The unit for the width is degree.
The pulse profile data are from EPN pulsar database. For PSR B1508+55, the 4750 MHz data are from Seiradakis et al. (1995), all the other data at
4.85 GHz are from von Hoensbroech & Xilouris (1997). The other data are from Gould & Lyne (1998).

in which RLC = pc/2π is the radius of a light cylinder for a
pulsar with period p, c is the light velocity, θM is the magnetic
polar angle between the magnetic axis and the tangent point of
the magnetic field line to the light cylinder as shown in Figure 1.
θM satisfies

2 cos θM(cos θM sin α + cos α cos ϕ sin θM)2 (7)

+ sin θM(cos α cos θM cos ϕ − sin α sin θM)(cos θM sin α

+ cos α cos ϕ sin θM) + 3 cos θM sin2 θM sin2 ϕ

= 0.

Note that there exists only one real solution for θM between
0 and π , the equation can be readily solved using numerical
methods, such as bisect or Newton’s step-down methods.

Here is a summary of steps to calculate the radiation altitude
ratios.

1. Measure the half pulse width Δφ from pulse profile and find
the maximal slope of the linear polarization position angle
curve from polarization data.

2. For any given inclination angle α, derive half width θμ of
the radiation beam from Equations (1) and (2).

3. Substitute θμ into Equations (4) and (5), and calculate the
angular coordinates {θ, ϕ} for the radiation location.

4. Calculate Re with Equations (6) and (7).
5. Use r = Re sin2 θ to calculate the radiation altitude r.
6. Repeat the above five steps for all the observational frequen-

cies. Once the altitudes at multiple frequencies are figured
out, calculate the ratio between radiation altitudes. Define
η = θ1/θ2 and ζ = r1/r2, which are the ratios between the
polar angles and between the altitudes of radiation locations
at two frequencies, respectively.

To see why the ratio between different altitudes is insensitive
to the inclination angle α, we adopt the Taylor expansion
technique to investigate the behavior of the altitude ratio when κ
is large, i.e., the maximal slope of the linear polarization position
curve is steep. Substituting Equation (1) into Equation (2) and
carrying out Taylor expansion of θμ

3 in terms of α, we have

θμ = A1α + A3α
3 + O(α5), (8)

3 Because θμ and θ have very good semilinear relation
θμ = 3θ/2 + θ3/8 + O(θ5), which is derived from Equation (3), the invariance
for the ratio of θμ leads to invariance for ratio of θ . To simplify the discussion,
we show the invariance for ratio of θμ instead of θ .

where the coefficients A1 and A3 are

A1 =
√

2κ(κ + 1) − 2κ cos(Δφ)(κ + 1) + 1

κ2
, (9)

A3 = 2κ cos(Δφ) + (κ + 1)(−κ + (κ + 1) cos(2Δφ) − 3)

8κ2A1
.

(10)

From Equation (8), we can calculate the ratio between θμ at
two frequencies as

θ ′
μ

θμ

= A′
1α + A′

3α
3 + O(α5)

A1α + A3α3 + O(α5)
= A′

1

A1

[
1 +

(
A′

3

A′
1

− A3

A1

)
α2

+O(α4)
]
. (11)

As shown by the right side of the above equation, the
dependence on α is canceled for the leading term. Because
|A′

3/A
′
1 −A3/A1| � |A′

3/A
′
1| + |A3/A1|, the smaller the A3/A1

is, the lesser the higher order terms would affect (i.e., the
coefficients for the α2 term will be smaller in Equation (11)),
which means that the effects of α will be smaller. To make this
point clear, the contour map for A3/A1 versus κ and ΔΦ is
plotted in Figure 2, which shows that the A3/A1 will be small
when κ is large. In this way, our method is valid to determine
the radiation altitude ratio to high accuracy for pulsars with a
steep slope of the linear polarization position curve. With further
simplification, we can use the following formula to estimate the
ratio of θμ up to the third order, if κ � 1 :

θμ2

θμ1
=

√
1 − cos Δφ1

1 − cos Δφ2
+

cos Δφ1 − cos Δφ2

4κ2
√

1 − cos Δφ1(1 − cos Δφ2)
3
2

+ O

(
1

κ3

)
. (12)

Similar check can be performed for ζ by Taylor expansion
techniques with the expansion series of r,

r = B2α
2 + B4α

4 + O(α6), (13)

where

B2 = 4

9
A2

1, (14)
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Figure 2. Contour plot for the absolute value of A3/A1 in terms of κ and Δφ. We
can clearly see that the A3/A1 is smaller, if the κ is larger. For such a situation,
we will have the invariant properties for the ratio (η and ζ ) between radiation
altitudes with respect to the nclination angle α.

B4 =(
144A1A3 − 11A4

1

)
κ4 − 20A2

1κ
3 − 10

(
A2

1 − 2
)
κ2 + 20κ + 5

162κ4
.

(15)

Although the expansion technique can show weakly α-
dependent behavior of ζ , we prefer to use the ζ–α and η–α plots,
like Figures 3–7, to directly check such weak dependence. In
Section 3, we have done such check for all the pulsar examples.

We now turn to study how much error for η and ζ is
introduced from the observational errors of Δφ and the error of
κ . Denoting the errors of Δφ and κ by δΔφ and δκ , respectively,
the estimation of error for the η is

δη �
√(

δθ1

θ2

)2

+

(
θ1δθ2

θ2
2

)2

, (16)

where δθ1 and δθ2 are the errors propagated from δΔφ and δκ .
The δθ is

(δθ )2 �
(

1 +
4

5 + 3 cos 2θ

)2
[(

∂θμ

∂Δφ

)2

δΔφ2 +

(
∂θμ

∂κ

)2

δκ2

]
,

(17)
where

∂θμ

∂Δφ
= sin Δφ sin α sin(α + β)

sin θμ

, (18)

∂θμ

∂κ
= − [sin β + 2 cos(α + β) sin α sin2(Δφ/2)]β

κ sin θμ

. (19)

The errors for ζ can be derived in a similar fashion. We
can also calculate numerical differentiations of the altitude ratio
with respect to κ and Δφ. Then we use the error propagation
equation like Equation (16) to calculate the error induced from
observational uncertainties δκ and δΔφ in practical situation.

2.2. Applications to Selected Pulsar

Next we take PSR B0329+54, B1508+55, B2016+28,
B1133+16, and B2319+60 as examples to show the quasi-
independence of η, ζ . The κ values are adopted from Lyne
& Manchester (1988) for all the pulsars. The pulse profile data
for PSR B0329+54, B2016+28, B1133+16, and B2319+60 at
0.408 GHz and 1.4 GHz are from Gould & Lyne (1998). Ex-
cept for PSR B1508+55, of which the 4.750 GHz data are from
Seiradakis et al. (1995), all the other data at 4.85 GHz are from
von Hoensbroech & Xilouris (1997). These pulsars are selected
by the following criteria such that we can measure the intrinsic
altitude ratio. (1) The interstellar scattering effect must be small
so that the scattering affects little the measurement of Δφ. (2)
Pulse profile data have high signal-to-noise ratio to allow good
measurement of Δφ.

Assuming that the noise in and out of the pulse window are
the same, the pulse profiles are fitted with a sum of Gaussians
to measure the width of the pulse profile (Kramer et al. 1994;
Wu et al. 1998, 2002; Qiao et al. 2003). The template to fit the
pulse profile is

I (φ,Ak, φc,k, σk) =
n∑

k=1

Ake
− ln 2

(φ−φc,k )2

σ2
k , (20)

where the number of Gaussians are n, I is the intensity of the
pulse profile, A is the amplitude of each Gaussian component,
φc is the center longitude of the Gaussian, and σ is the 50%
intensity width of the Gaussian. The subscript “k” denotes the
index of the Gaussians. The Levenberg–Marquardt method is
used to search for 3n parameters {Ak, φc,k, σk}, k ∈ [1, n] to
minimize the residue, Res, given as

Res =
N∑

i=0

(
I (φi, Ak, φc,k, σk) − Ii

)2
, (21)

where N is the number of data points of the pulse profile,
{φi, Ii}, i ∈ [1, N], are observational data.

After fitting, the width of the pulse profile is estimated using

2Δφ = φc,right − φc,left + 1.82262(σright + σleft), (22)

where 2Δφ is the full width of the pulse profile measured
down to 10% intensity, which is in concord with the standard
notation (Kramer et al. 1994). The φc,right and φleft are the central
longitude of the rightmost and the leftmost Gaussians, whose
widths are σright and σleft, respectively. The χ2 test is adopted to
estimate the error for Δφ. The fitted pulse profiles for the five
pulsars are given in Figure 8. The measured pulse width are
listed in Table 2.

Using the method mentioned above, we calculate the relation
between the inclination angle α and the altitude ratios (η and ζ )
for the five pulsars, which are plotted in Figures 3–7. The values
for A3

A1
are given in Table 3 and the values of the ratio η, ζ are

given in Table 4. It is shown that the η and ζ are almost constants,
when α changes from 0◦ to 90◦. The variance of the ratio due
to unknown α is smaller than the errors propagated from errors
of κ and the pulse width. Thus, the ratios are insensitive to the
unknown inclination angle α, which make the altitude ratio ζ be
a better observational quantity than absolute radiation altitude.

In the next section, we will use the altitude ratios derived here
to test the RS model and constrain the parameter space of the
inverse Compton scattering model for radio pulsar.
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Figure 3. Radiation altitude ratios as functions of α for PSR B0329+54, where the subscript indicates the observing frequencies. The error bars indicate the error
introduced by errors of Δφ and κ . It is clear that the error introduced by unknown α is smaller than the error passing from errors of Δφ and κ . Thus the ratios between
different radiation altitudes are quasi-invariant for PSR B0329+54.
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Figure 4. Radiation altitude ratios as functions of α for PSR B1508+55, where the subscript indicates the observing frequencies.
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Figure 6. Radiation altitude ratios as functions of α for PSR B1133+16, where the subscript indicates the observing frequencies.
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Figure 7. Radiation altitudes ratio as functions of α for PSR B2319+60, where the subscript indicates the observing frequencies.

Table 3
A3/A1 for PSR B0329+54, B1508+55, B2016+28, B1133+16, and B2319+60

at Multiple Frequencies

PSR A3
A1

|0.4 GHz
A3
A1

|1.4 GHz
A3
A1

|4.8 GHz Max
(

A3
A1

− A′
3

A′
1

)
PSR B0329+54 −0.1994 −0.2000 −0.2032 3.7 × 10−3

PSR B1508+55 −0.2329 −0.2330 −0.2352 2.3 × 10−3

PSR B2016+28 −0.2901 −0.2914 −0.2905 1.3 × 10−3

PSR B1133+16 −0.2740 −0.2740 −0.2733 7.2 × 10−4

PSR B2319+60 −0.2759 −0.2783 −0.2794 3.5 × 10−3

Notes. The last column gives the maximal variance of A3/A1 among three
frequencies. The difference between A3/A1 is on the order of 10−3, thus the
ratio will be insensitive with respect to α.

3. APPLICATIONS

3.1. Application for the RS Model

In this section, we apply the method to test the RS model. The
RS model predicts that the radio wave with angular frequency ω

coming from altitude r (Ruderman & Sutherland 1975) follows

r = 2

(
2πγmaxeBR3

pmec

)1/3

ω−2/3, (23)

where R is the pulsar radius, me is the rest mass of the electron,
B is the surface magnetic field of the pulsar, γmax is the maximal
Lorentz factor of electrons. Assuming dipolar magnetic field,
the polar angle for radiation location will be θ � √

r/RLC.
Thus,

θ = 4.5 × 10−2p−7/12ṗ
1/12
[−15]γ

1/6
max ω

−1/3
GHz , (24)

where ωGHz is the angular frequency of radio wave in unit of
GHz, ṗ[−15] is the period derivative in unit of 10−15 s/s, period
p is in unit of second. The radiation altitude ratio by the RS
model is then

θ1

θ2
=

(
ω2

ω1

)1/3

, (25)

r1

r2
=

(
ω2

ω1

)2/3

. (26)
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Figure 8. Observed pulse profile data, fitted pulse profile, and fitting residue for B0329+54, B1508+55, B2016+28, B1133+16, and B2319+60. The “*” symbol
corresponds to the observed pulse profile, the fitted pulse profile is indicated by the solid line, and the fitting residual is plotted in the lower panel.

In this way the RS model predicts θ1.4 GHz/θ0.408 GHz = 0.70
and θ4.8 GHz/θ0.408 GHz = 0.46 for all pulsars. This is clearly
incomparable with the ratio we measured in the previous section.
Thus, the RS model needs improvement in order to explain the
observed RFM.

3.2. Application for the ICS Model

In this section, we use the method developed in Section 2
and the radiation altitude ratios of PSR B2016+28 and PSR
B0950+08 to constrain the parameter space of the ICS model.

The ICS model proposed that low-frequency radio waves
are produced in polar gap sparking and then are inverse
Compton scattered by high-energy secondary particles to form
the observed radio radiation beams (Qiao & Lin 1998). One
prediction of the model is that the radio waves of different
frequencies come from different altitudes (see the “beam-
frequency figures” in Qiao et al. 2001 for details).

The ICS model proposes that low-frequency radio wave with
frequency ω0 is produced by polar gap sparking, and then inverse
Compton scattered by secondary particles, of which the Lorentz
factor is γ , to a higher frequency ω′ = 2γ 2ω0(1 − v cos θi/c),
where v is the velocity of secondaries. We take v/c = 1
because the velocity of secondaries is ultra relativistic (γ is
about several hundred). The θi is the angle between the direction
of propagation of low-frequency radio wave and the direction
of velocity of secondaries, which satisfies (Qiao et al. 2001)

cos θi = 2 cos θ − (R/r)(1 − 3 cos2 θ )√
(1 + 3 cos2 θ )[1 − 2(R/r) cos θ + (R/r)2

, (27)

the ICS model assumes that the Lorentz factor γ of secondaries
will reduce due to energy loss, which follows γ = γ0[1 −
ξ (r − R)/Re], where γ0 and ξ are the initial Lorentz factor for

secondaries and the energy loss factor, respectively. γ0, ξ , and
ω0 are three total parameters for the ICS model. In this paper,
we constrain the parameter space for γ0 and ξ , while fix ω0 =
106 Hz following the conventional assumption of the ICS model.
In fact, because ω0 is always multiplied with γ 2

0 , the degrees
of freedom for ω0 and γ0 are degenerated. Thus, we can fix
ω0 = 106 Hz without losing generality.

Using the above equations, we calculate the ratio between
radiation altitudes of different frequencies as a function of α
using the ICS model. Then we compared the simulated ratios
with the ratio measured using the method given in Section 2 to
constrain the range of parameters γ0 and ξ . The results for the
five pulsars are presented in Figure 9. To meet the observations,
the initial Lorentz factor for the ICS model should be of the
order of 103–104.

4. CONCLUSION AND DISCUSSION

We have presented an algorithm for calculating the ratio
between the radiation altitudes of pulsars observed at different
frequencies, given multifrequency pulse profiles and linear
polarization position angle curve. It is shown that the ratio
between emission altitudes will be insensitive to the inclination
angle α, if the polarization position angle curves are steep, i.e.,
κ � 1. This algorithm offers us a method to determine the
relative radiation altitudes to a high accuracy.

Because the selected pulsar examples have long enough pe-
riod (order of 10−1 to 1 s) compared to the pulse broadening
due to scattering (order of 1 ms estimated from the disper-
sion measure), we have ignored the scattering effects when
determining the pulse width (Mitra & Ramachandran 2001).
Scattering effects introduce less than 1◦ error in measuring the
pulse width (Li & Han 2003). Rankin (1983, 1990) pointed out
that the pulse morphology is rather complex. In this paper, we
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Figure 9. Allowable parameter space of the ICS model for PSR B0329+54, B1508+55, B2016+28, B1133+16, and B2319+60. γ0 and ξ are the initial Lorentz factor
for secondaries and energy loss factor for the ICS model. The gray areas are the possible parameter space for the ICS model that give radiation altitude ratio compatible
with our measurements. The branching behavior of the gray area is due to the property of the ICS model, in which radio wave with the same frequency comes from
up to three different altitudes. Note that the panels for PSR B2016+28 have different scales.

use the total pulse width, within which the dominate part of
the radiation beam is included. Thus, we do not perform the
pulse-profile-component identification such as that in Srostlik
& Rankin (2005b).

Because we use only the pulse width of the pulse profile rather
than the relative phase shift, we ignore the effects of magnetic
field line bending, aberration, and retardation. The magnetic
field line bending and aberration will be second order effects
for our method, although they are first order effects for phase
shift of pulse components (Phillips 1992; Gangadhara 2005; Lee
et al. 2006).

Although the altitude ratio is insensitive to the inclina-
tion angle, the absolute altitudes are sensitive to the inclina-
tion angle. In this way, our three-dimensional method does
not measure absolute altitudes solely. However, when com-
bining with radiation altitude measured at one frequency,
we can easily calculate the altitudes for other frequen-
cies.

There is no last open magnetic field line assumption in
calculating η. However, we have assumed that the radiation
comes from last open magnetic field lines, when calculating ζ .
This assumption can be weakened for radiation coming from
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Table 4
Measured Value of η and ζ for PSR B0329+54, B1508+55, B2016+28,

B1133+16, and B2319+60

PSR 1.4 GHz/0.408 GHz 4.8 GHz/0.408 GHz

PSR B0329+54
η 0.98 ± 0.01 0.89 ± 0.01
ζ 0.97 ± 0.02 0.81 ± 0.02

PSR B1508+55
η 0.99 ± 0.02 0.72 ± 0.03
ζ 0.99 ± 0.04 0.53 ± 0.05

PSR B2016+28
η 1.05 ± 0.01 1.01 ± 0.004
ζ 1.07 ± 0.04 1.02 ± 0.01

PSR B1133+16
η 0.94 ± 0.01 0.83 ± 0.01
ζ 0.90 ± 0.03 0.72 ± 0.08

PSR B2319+60
η 0.91 ± 0.01 0.85 ± 0.02
ζ 0.84 ± 0.04 0.75 ± 0.05

Notes. η is the ratio between polar angles of radiation locations, i.e., η = θ1/θ2.
ζ is the ratio between altitudes of radiation locations, i.e., ζ = r1/r2. Here, the
errors in this table include both the error from the tiny dependence of ratio on
the inclination angle and the error induced from the errors of κ and Δφ.

magnetic field lines with same Re. If so, the Re can be canceled
in calculating the ratio ζ .

Using the accurately measured radiation altitude ratios, we
can test or constrain the parameter space for pulsar radiation
models. We take the RS model and the inverse Compton
scattering model as examples to show the application of this
technique. For the RS model, our analysis show inconsistency
between the RS model prediction and observed radiation altitude
ratios. This may be due to the rough treatments of secondaries’
energy loss and rough estimation for the RFM in the RS model
or due to the incorrect radiation scenario (i.e., whether the radio
radiation is really generated through the curvature radiation).
For the ICS model, our results are consistent with the results of
Zhang et al. (2007). The parameter space of PSR B2016+28 is
limited to a smaller region due to smaller error of the measured
ratio compared to others. It should be easy to generalize this
method to other radiation models, which predicted the relation
between the radiation altitude and the radiation frequency.

Because we do not use the relative time delay of radiation
components, our method will be easily generalized to high
energy band without dispersion delay correction. Thus, this
method will also be good tool to study high energy radiation
processes, such as radiation processes in γ -ray bands and X-
ray bands. The ongoing project FERMI will provide a higher
quality γ -ray data, which will be an ideal target to study the
pulsar radiation mechanism using this method.

It has been realized that there is inconsistency in measuring
the altitudes between using time delay methods and using
geometrical methods (Mitra & Li 2004). Our method will
be affected neither by propagation effects nor by unknown
inclination angle. Thus, the method could offer a check for
the present absolute altitude measurements.

This method will also be a tool for pulsar timing researches.
Pulsar timing is now pushing the limit to the accuracy of about
100 ns (van Straten et al. 2001). To achieve such accuracy,
the altitudes of radiation should not change more than 30 m.
Because our method of determining the altitude ratio of radiation
location can, in principle, achieve accuracy of 10−4, we could
study the effects of pulsar timing noise induced by radiation
altitude variation.
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constructive suggestions and help on choosing pulsar sources.
We are also grateful to J. L. Han, R. T. Gangadhara, and
C. K. Chou for discussions and comments. This work was
supported by NSFC (10833003, 10778611) and the National
Basic Research Program of China (grant 2009CB824800).

APPENDIX

PULSAR RADIATION GEOMETRY

In this appendix, we derive the analytic form equations
for pulsar radiation geometry. More details and discussions
about the high-order effects, such as aberration, retardation,
and relativistic light bending, can be found in Lee (2003).

We call the Cartesian coordinate O–X′Y ′Z′ magnetic coordi-
nate and the Cartesian coordinate O–XYZ lab coordinate, where
the Z-axis of the lab coordinate is the rotation axis of the pulsar;
and the Z′-axis of the magnetic coordinate is the magnetic axis
of the pulsar. We choose the coordinates such that we align the
Y- and Y ′-axes. These two coordinates are just generated by an-
gular rotation about the Y-axis with angle α with respect to each
other. The coordinate transformation between two coordinates
is given by(

x
y
z

)
=

(
cos α 0 sin α
0 1 0
− sin α 0 cos α

)(
x ′
y ′
z′

)
, (A1)

where symbols with ′ denote the coordinates value in the mag-
netic coordinate and α is the inclination angle. The coordinate
values for magnetic field lines (r = Re sin2 θ ) in the magnetic
coordinate are (

x ′
y ′
z′

)
= Re

⎛
⎝ sin3 θ cos ϕ

sin3 θ sin ϕ

sin2 θ cos θ

⎞
⎠ . (A2)

So, the coordinates of magnetic field lines in the lab coordinate
are(

x
y
z

)
= Re

⎛
⎝ sin2 θ (cos α cos ϕ sin θ + cos θ sin α)

sin3 θ sin ϕ

sin2 θ (cos α cos θ − cos ϕ sin α sin θ )

⎞
⎠ .

(A3)
The half width of the beam angle θμ can be calculated in the

magnetic coordinate. We have

tan θμ = ∂θx
′

∂θz′

∣∣∣∣
ϕ=0

= 3 sin 2θ

3 cos 2θ + 1
. (A4)

Thus, the radiation beam projected onto the unit sphere in the
lab coordinate is(

xbeam
ybeam
zbeam

)
=

(
cos θμ sin α + cos α cos ϕ sin θμ

sin θμ sin ϕ
cos α cos θμ − cos ϕ sin α sin θμ

)
. (A5)

Given the observer with impact angle β. The two observable
points for the radiation beam satisfy zbeam = cos(α + β), which
is just (Equation (5))

cos α cos θμ − cos ϕ sin α sin θμ = cos(α + β). (A6)

Putting Equation (A6) into Equation (A5), we can get the
x-components of the coordinate for the radiation beam

xbeam = cos θμ csc α − cos(α + β) cot α. (A7)
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Note that zbeam = cos(α + β), we have following equation for
the half angular width Δφ for the pulse of pulsar:

cos Δφ = xbeam

sin(α + β)
= cos θμ − cos(α + β) cos α

sin α sin(α + β)
, (A8)

which could be easily converted to Equation (2) (Lyne &
Manchester 1988).

For Equation (A3), we can calculate the length l =
√

x2 + y2

of a point on magnetic field lines to the rotation axis. The last
open magnetic field lines are tangent to the light cylinder, so we
have

RLC = Re sin2 θM

√
1 − (cos α cos θM − cos ϕ sin α sin θM)2.

(A9)
It is clear that the l reaches its maximal value at θM, thus we
have (in fact this is Equation (7))

∂l

∂θ

∣∣∣∣
θ=θM

= 0. (A10)
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