
Mon. Not. R. Astron. Soc. 402, 2715–2719 (2010) doi:10.1111/j.1365-2966.2009.16091.x

Strange stars with different quark mass scalings
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ABSTRACT
We investigate the stability of strange quark matter and the properties of the corresponding
strange stars for a wide range of quark mass scalings. The calculations show that the resulting
maximum mass always lies between 1.5 M� and 1.8 M� for all the scalings chosen here.
Strange star sequences with a linear scaling support the lowest gravitational masses, and
a change (increase or decrease) of the scaling around the linear scaling leads to a higher
maximum mass. Radii always decrease with the mass scaling. Thus, the larger the scaling,
the faster the star might spin. In addition, the variation of the scaling causes an order of
magnitude change of the strong electric field on the quark surface. This field is essential to the
support of possible crusts of strange stars against gravity and thus may have some astrophysical
implications.
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1 IN T RO D U C T I O N

When studying the equation of state (EOS) of ordinary quark matter,
the crucial point is to treat quark confinement in an appropriate
way. As an alternative to the conventional bag mechanism (in which
quarks are asymptotically free within a large bag), one way to obtain
confinement is based on the density dependence of the quark mass,
and thus the variation of quark mass with density mimics the strong
interaction between quarks, which is the basic idea of the quark
mass-density-dependent model.

Originally, the interaction part of the quark mass was assumed
to be inversely proportional to the density (Fowler, Raha & Weiner
1981; Chakrabarty, Raha & Sinha 1989; Chakrabarty 1991, 1993,
1996), and this linear scaling has been extensively applied to study
the properties of strange quark matter (SQM). However, this class
of scaling is often criticized because it lacks a convincing derivation
(Peng et al. 1999). Subsequently, a cubic scaling was derived based
on the in-medium chiral condensates and linear confinement (Peng
et al. 1999) and has been widely used since (Lugones & Horvath
2003; Zheng et al. 2004; Peng, Wen & Chen 2006; Wen, Peng &
Chen 2007; Peng, Li & Lombardo 2008). This derivation is still
not well justified, however, as it considered only the first-order ap-
proximation of the chiral condensates in the medium. Incorporating
higher orders of the approximation would non-trivially complicate
the quark mass formulas (G.X. Peng, private communication). There
are, however, other mass scalings in the literature (Dey et al. 1998;
Wang 2000; Zhang et al. 2001; Zhang & Su 2002, 2003).

Despite the large uncertainty in the quark mass formulas, the
quark mass-density-dependent model is no doubt only a crude ap-
proximation to quantum chromodynamics. For example, the model
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may not account for the quark system in situations where realis-
tic quark vector interaction is non-ignorable. However, we cannot
obtain a general idea of how the strong interaction acts from the fun-
damental theory of strong interactions to hand (i.e. quantum chro-
modynamics). Until this stimulating controversy is solved, we feel
justified in taking the pragmatic point of view and using the model.
This work does not claim to explain how Nature works. It may, how-
ever, shed some light on what may happen in interesting physical
situations. In this respect, the quark mass-density-dependent model
has been, and still is, an interesting framework.

The aim of this paper, then, is to clarify to what extent this
scaling model is appropriate for studying the properties of SQM.
To this end, we treat the quark mass scaling as a free parameter
with which to investigate the stability of SQM and the variation
in the predicted properties of the corresponding strange stars (SSs)
within a wide scaling range. Furthermore, we try to demonstrate
the general features of SSs related to astrophysical observations,
whatever the value of the free parameters.

The paper is organized as follows. In Section 2 we describe
the formalism applied to calculate the EOS of the SQM in the
quark mass-density-dependent model. In Section 3 we present the
structure of stars made of this matter, including the mass–radius
relationship, spin frequency and electric properties of the quark
surface. Finally, in Section 4 we present our main conclusions.

2 TH E MO D EL

As is usually done, we consider SQM as a mixture of interacting
u, d and s quarks and electrons, where the mass of the quarks
mq(q = u, d , s) is parametrized with the baryon number density nb

as follows:

mq ≡ mq0 + mI = mq0 + C

nx
b

, (1)
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where C is a parameter to be determined by stability arguments. The
density-dependent mass mq includes two parts: one is the original
mass or current mass mq0, and the other is the interacting part mI.
The exponent of density x, that is, the quark mass scaling, is treated
as a free parameter in this paper.

Denoting the Fermi momentum in phase space by ν i(i =
u, d , s, e−), the particle number densities can be expressed as

ni = gi

∫
d3p

(2π�)3
= gi

2π2

∫ νi

0
p2 dp = giν

3
i

6π2
, (2)

and the corresponding energy density as

ε =
∑

i

gi

2π2

∫ νi

0

√
p2 + m2

i p2 dp. (3)

The relevant chemical potentials μu, μd, μs and μe satisfy the
weak-equilibrium condition (we assume that neutrinos leave the
system freely):

μu + μe = μd,μd = μs. (4)

For the quark flavour i we have

μi = dε

dni

|{nk �=i } = ∂εi

∂νi

dνi

dni

+
∑

j

∂ε

∂mj

∂mj

∂ni

=
√

ν2
i + m2

i +
∑

j

nj

∂mj

∂ni

f

(
νj

mj

)
, (5)

where

f (a) ≡ 3

2a3

[
a
√

1 + a2 − ln
(
a +

√
1 + a2

)]
. (6)

It can clearly be seen from equation (5) that, because the quark
masses are density-dependent, the derivatives generate an additional
term with respect to the free Fermi gas model.

For electrons, we have

μe =
√(

3π2ne

)2/3 + m2
e . (7)

The pressure is then given by

P = −ε +
∑

i

μini

= −�0 +
∑

ij

ninj

∂mj

∂ni

f

(
νj

mj

)

= −�0 + nb
dmI

dnb

∑
j=u,d,s

njf

(
νj

mj

)
,

(8)

with �0 being the free-particle contribution:

�0 = −
∑

i

gi

48π2

[
νi

√
ν2

i + m2
i

(
2ν2

i − 3m2
i

)

+ 3m4
i arcsinh

(
νi

mi

)]
. (9)

The baryon number density and the charge density can be given
as

nb = 1

3
(nu + nd + ns), (10)

Qq = 2

3
nu − 1

3
nd − 1

3
ns − ne. (11)

The charge-neutrality condition requires Qq = 0.

Figure 1. The stability window of the strange quark matter at zero pressure
for quark mass scaling parameters of x = 1/10, 1/5, 1/3, 1, 2. The stability
region (shaded) is where the energy per particle is lower than 930 MeV and
two-flavour quark matter is unstable.

Solving equations (4), (10) and (11), we can determine nu, nd,
ns and ne for a given total baryon number density nb. The other
quantities are obtained straightforwardly.

In the present model, the parameters are: the electron mass me =
0.511 MeV, the quark current masses mu0, md0 and ms0, the con-
finement parameter C and the quark mass scaling x. Although the
light-quark masses are not without controversy and remain under
active investigation, they are anyway very small, and so we sim-
ply take mu0 = 5 MeV, md0 = 10 MeV. The current mass of strange
quarks is 95 ± 25 MeV according to the latest version of the Particle
Data Group (Yao et al. 2006).

We now need to establish the conditions under which the SQM
is the true strong-interaction ground state. That is, we must require,
at P = 0, E/A ≤ M(56Fe)c2/56 = 930 MeV for the SQM and
E/A > 930 MeV for two-flavour quark matter [where M(56Fe) is
the mass of 56Fe] in order not to contradict standard nuclear physics.
The EOS will describe stable SQM only for a set of values of
(C, ms0) satisfying these two conditions, which is given in Fig. 1
as the ‘stability window’. Only if the (C, ms0) pair is in a shaded
region can SQM be absolutely stable, and therefore the range of
C-values is very narrow for a chosen ms0-value. As shown in Fig. 1,
the width of the allowed region decreases for decreasing value of
x. When x = 1/10 it approaches a very narrow band around C =
199.1 MeV fm−3x.

In Fig. 2 we illustrate the density dependence of mI with the
quark mass scalings x = 1/10, 1/3, 1, 3. The calculation is carried
out with ms0 = 95 MeV and C-values corresponding to the upper
boundaries defined in Fig. 1 (the calculations are done with the
same parameters hereafter); that is, the system always lies in the
same binding state (for each x), namely E/A = 930 MeV. We present
those C-values in the bottom row of Table 1. Clearly, the quark mass
varies in a very large range from very high-density regions (asymp-
totic freedom regime) to lower-density regions, where confinement
(hadron formation) takes place. The density dependence of mI is
compared with Dey et al.’s (1998) scaling (dash–dotted line).

3 R ESULTS AND DI SCUSSI ON

The resulting EOSs of SQM are shown in Fig. 3 for all considered
models. Because the sound velocity v = | dP/dρ | 1/2 should be
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Figure 2. The density dependence of mI for quark mass scaling parameters
of x = 1/10, 1/3, 1, 3. The calculation is carried out with ms0 = 95 MeV
and C-values presented in the bottom row of Table 1 (see text for details).
Dey et al.’s (1998) scaling (dash–dotted line) is shown for comparison.

Table 1. Calculated results for the gravitational mass, radius, central baryon
density (normalized to the saturation density of nuclear matter, n0 =
0.17 fm−3) and maximum rotational frequency for the maximum-mass star
of each strange star sequence. The calculation is carried out with ms0 =
95 MeV and C-values presented in the bottom row of this table.

x 1/10 1/5 1/3 1 2 3

M/M� 1.78 1.66 1.61 1.56 1.61 1.62
R/km 13.2 10.5 9.38 8.10 7.97 7.89
nc/n0 4.35 6.47 7.88 10.1 10.2 10.3

f max/Hz 1066 1446 1691 2072 2159 2194
C/MeV fm−3x 199.1 157.2 126.8 69.5 41.7 28.8

Figure 3. The equations of state of strange quark matter for all considered
models. The unphysical region determined by this condition is denoted by
circles (see text for details).

smaller than c (the velocity of light), the unphysical region deter-
mined by this condition is displayed with circles. For the x-values
chosen here, the EOSs have quite different behaviours at low den-
sities, basically falling into two groups. At small scalings (x =
1/10, 1/5, 1/3) the pressure increases slowly with density, whereas
the curve turns to increase rapidly with density at relatively large

Figure 4. The total pressure as a function of neutron chemical potential in
strange quark matter for all considered models, and comparison with that of
typical nuclear matter (see text for details).

x-values (x = 1, 2, 3). Those EOSs cross at ε ∼ 800 MeV fm−3,
and then tend to be asymptotically linear relations at higher densi-
ties, and a larger x-value leads to a stiffer EOS. We also check the
stability of such quark matter, as some of the EOSs in Fig. 3 (x =
1, 2, 3) are rather stiff for small pressures. We present in Fig. 4 the
total pressure as a function of neutron chemical potential in quark
matter for all considered models, and a comparison with that of
typical nuclear matter (obtained from the Brueckner–Hartree–Fock
approach of Li et al. 2006). We see clearly from the figure that the
quark matter tends to be more stable than nuclear matter for all
considered models.

The behaviour of EOSs is mirrored in the prediction of the mass–
radius relations of the corresponding SSs, as shown in Fig. 5. For
the first group, the maximum mass occurs at a low central density
(as shown in Table 1), so a higher maximum mass is obtained owing
to a stiffer EOS, and, with increasing x-value, the maximum mass is
reduced from 1.78 M� at x = 1/10 down to 1.61 M� at x = 1/3.
We observe a slight increase of the maximum mass with x-value for

Figure 5. The mass–radius relationships of strange stars for all considered
models. M(R) curves for the lower boundaries defined in Fig. 1 with the
quark mass scaling parameters x = 1/5, 1/3, 1 are shown with grey lines.
Contours of the maximum rotation frequencies are given by the light grey
curves (Gourgoulhon et al. 1999).
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the second group: from 1.56 M� at x = 1 up to 1.62 M� at x =
3. In any case, the resulting maximum mass lies between 1.5 M�
and 1.8 M� for a wide range of x-values (0.1–3), which may be a
pleasing feature of this model, namely that it is well controlled. To
see the region of stellar parameters allowed by this model, we also
plot in Fig. 5 the M(R) curves for the lower boundaries defined in
Fig. 1 for x = 1/5, 1/3 and 1 (grey lines).

The radii, on the other hand, decrease always with x-value. Em-
ploying the empirical formula connecting the maximum rotation
frequency with the maximum mass and radius of the static configu-
ration (Gourgoulhon et al. 1999), we obtain the maximum rotational
angular frequency �max as 7730(Mstat� /M�)1/2 (Rstat

M�/10 km)−3/2

rad s−1. Consequently, a larger x-value results in a larger maximum
spin frequency: SSs with x = 3 can rotate at a frequency of f max =
2194 Hz. More detailed results can be found in Table 1.

In addition, the surface electric field could be very strong near
the bare quark surface of a SS because of the mass difference of the
strange quark and the up (or down) quark, which could play an im-
portant role in producing the thermal emission of bare strange stars
by the Usov mechanism (Usov 1998; Usov 2001). The strong elec-
tric field is also crucial to the formation of a possible crust around
a SS, and has been investigated extensively by many authors (for
a recent development, see Zdunik, Haensel & Gourgoulhon 2001).
Furthermore, it should be noted that this electric field may have
some important implications for pulsar radio emission mechanisms
(Xu, Zhang & Qiao 2001). It is therefore very worthwhile to explore
how the mass scaling influences the surface electric field of the stars,
and possible related astronomical observations may in turn provide
a hint of what the proper mass scaling should be.

Adopting a simple Thomas–Fermi model, one obtains Poisson’s
equation (Alcock, Farhi & Olinto 1986):

d2V

dz2
=

{
4α

3π

(
V 3 − V 3

q

)
z ≤ 0,

4α

3π
V 3 z > 0,

(12)

where z is the height above the quark surface, α is the fine-structure
constant, and V 3

q/(3π2
�

3c3) is the quark charge density inside the
quark surface. Together with the physical boundary conditions {z
→ −∞: V → V q, dV /dz → 0; z → +∞: V → 0, dV /dz →
0}, and the continuity of V at z = 0 (which requires V (z = 0) =
3V q/4), the solution for z > 0 finally leads to

V = 3Vq√
6α

π
Vqz + 4

(for z > 0). (13)

The electron charge density can be calculated as V 3/(3π2
�

3c3), and
therefore the number density of the electrons is

ne = 9V 3
q

π2
(√

6α

π
Vqz + 4

)3 (14)

and, finally, the electric field above the quark surface is

E =
√

2α

3π

9V 2
q(√

6α

π
Vq z + 4

)2 , (15)

which is directed outwards.
We see from Fig. 6 (take x = 1/3 for example) that, although

the electric field near the surface is about 1018 V cm−1, the outward
electric field decreases very rapidly above the quark surface, and
at z ∼ 10−8 cm the field gets down to ∼5 × 1011 V cm−1, which
is of the order of the rotation-induced electric field for a typical
Goldreich–Julian magnetosphere. A change in the mass scaling has

Figure 6. The electric field above the quark surface for quark mass scaling
parameters of x = 1/3, 1, 2 and 3.

two main effects. First, it has a large effect on the surface electric
field, and a small scaling parameter leads to an enhanced electric
field. The weakening of the electric field would be of almost an order
of magnitude (from 1017 V cm−1 to 1018 V cm−1), which may have
some effect on astronomical observations. Second, a larger scaling
slows the decrease of the electric field above the quark surface.

4 C O N C L U S I O N S

In this paper, we have investigated the stability of SQM within a
wide scaling range, namely from 0.1 to 3. We have also studied
the properties of SSs made of this matter. The calculations show
that the resulting maximum mass always lies between 1.5 M� and
1.8 M� for all the mass scalings chosen here. SS sequences with a
linear scaling support the lowest gravitational masses, and a change
(increase or decrease) of the scaling parameter around the linear
scaling results in a higher maximum mass. Radii always decrease
with the mass scaling. Thus, the larger the scaling, the faster the star
rotates. In addition, a variation in the scaling may cause an order
of magnitude change of the surface electric field, which may have
some effect on astronomical observations.
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