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A B S T R A C T 

The strong interaction at low-energy scales determines the equation of state (EOS) of supranuclear matters in neutron stars 
(NSs). It is conjectured that the bulk dense matter may be composed of strangeons, which are quark clusters with nearly equal 
numbers of u , d , and s quarks. To characterize the strong-repulsive interaction at short distance and the non-relativistic nature 
of strangeons, a phenomenological Lennard–Jones model with two parameters is used to describe the EOS of strangeon stars 
(SSs). For the first time, we investigate the oscillation modes of non-rotating SSs and obtain their frequencies for various 
parametrizations of the EOS. We find that the properties of radial oscillations of SSs are different from those of NSs, especially 

for stars with relati vely lo w central energy densities. Moreo v er, we calculate the f-mode frequency of non-radial oscillations of 
SSs within the relati vistic Co wling approximation. The frequencies of the f mode of SSs are found to be in the range 6.7–8.7 kHz. 
Finally, we study the universal relations between the f-mode frequency and global properties of SSs, such as the compactness 
and the tidal deformability. The results we obtained are rele v ant to pulsar timing and gravitational waves, and will help to probe 
NSs’ EOSs and infer non-perturbative behaviours in quantum chromodynamics. 

Key words: asteroseismology – gra vitational wa ves – stars: oscillations – pulsars: general. 
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 I N T RO D U C T I O N  

he equation of state (EOS) of nuclear dense matter plays a crucial
ole in many astrophysical phenomena associated with neutron
tars (NSs; Lattimer & Prakash 2007 ; Ozel, Baym & Guver 2010 ;
bbott et al. 2018 ). Owing to the non-perturbative properties of

he strong interaction at low energy, the EOS of dense matters
t several nuclear densities still remains unknown. Witten ( 1984 )
onjectured that the true ground state of the dense matter is quark
atter composed of almost free u , d , and s quarks. The pulsar-like

ompact objects should be quark stars (QSs) rather than conventional
Ss. The MIT bag model with almost free quarks (Alcock, Farhi &
linto 1986 ) and the colour-superconductivity state model (Alford

t al. 2008 ) have been used in literature to study QSs. In 2003, Xu
 2003 ) proposed that the constituting units of the supranuclear matter
ould be strange quark clusters, since the non-perturbative strong
nteraction may render quarks grouped in clusters. Each quark cluster
s composed of several quarks (including u , d , and s fla v ours)
ondensing in position space rather than in momentum space. A
ame ‘strangeon’ is coined to these strange ‘nucleons’ (Lai & Xu
017 ; Xu & Guo 2017 ). In this sense, compressed baryonic matter
ould be in a state of strangeons, and pulsar-like compact stars could
hus be strangeon stars (SSs). 

Strangeon matter, similar to strange quark matter, is composed
f nearly equal numbers of u , d , and s quarks. Ho we ver, dif ferent
rom strange quark matter, quarks in strangeon matter are localized
nside strangeons due to the strong coupling between quarks. There
 E-mail: g aoyong.ph ysics@pku.edu.cn (YG); lshao@pku.edu.cn (LS); 
.x.xu@pku.edu.cn (R-XX) 
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re differences and similarities among NSs, QSs, and SSs. On the
ne hand, quarks are thought to be localized in strangeons in SSs,
ike neutrons in NSs. On the other hand, a strangeon, with light-
a v our symmetry restoration of quark, may contain more than three
alence quarks. In addition, the matter at the surface of SSs is
trangeon matter, i.e. SSs are self-bound by the strong force, like
Ss (Xu 2003 ). These properties are fundamental to a few important

strophysical observables. A sophisticated study on various global
arameters of rotating SSs, including mass, radius, moment of inertia,
idal deformability, quadrupole moments, and shape parameters, was
arried out by Gao et al. ( 2022 ). 

SSs can account for many current observational facts in astro-
hysics. The EOS of SSs could be very stiff to explain the observed
assive pulsars (Demorest et al. 2010 ; Antoniadis et al. 2013 ). The
agnetospheric activity of SSs was discussed in Xu, Qiao & Zhang

 1999 ). Lu et al. ( 2019 ) explained the sub-pulse drifting of radio
ulsars using the properties at the surface of SSs. Also, pulsar glitches
ould be the result of star quakes (Peng & Xu 2008 ; Zhou et al. 2004 ,
014 ), and a detailed modelling of the glitch behaviours confronted
ith observations was discussed in Lai et al. ( 2018b ). The model of
Ss can be extended to explain the glitch activity of normal radio
ulsars (Wang et al. 2020 ). Recent studies (Lai et al. 2018a , 2021 ;
ai, Zhou & Xu 2019 ) hav e inv estigated the tidal deformability as
ell as the ejecta and light curve of merging binary SSs, showing

onsistency with the observations of the gravitational wave (GW)
vent GW170817 (Abbott et al. 2017 ) and its multiwavelength elec-
romagnetic counterparts (Kasen et al. 2017 ; Kasliwal et al. 2017 ). 

Owing to the difficulties in determining the EOS of pulsar-like
ompact stars from first principles, observations from different
hannels become important avenues in studying the EOS at high
ensity, which can in turn be used to constrain microscopic laws (Ozel
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t al. 2010 ). In this respect, GW asteroseismology that deals with
scillation modes offers a promising channel in the new era of
Ws (Andersson & Kokkotas 1998 ; Benhar, Ferrari & Gualtieri 
004 ; Done v a et al. 2013 ; Andersson 2019 ). It is the focus of this
tudy. 

Radial oscillations of stellar models were studied in the pioneering 
orks of Chandrasekhar ( 1964a , b ). Notably, the properties of radial
scillations can give information about the stability and the EOS of
ompact stars. The first e xhaustiv e compilation of radial oscillations 
or different zero-temperature EOSs was presented by Glass & 

indblom ( 1983 ). In Vaeth & Chanmugam ( 1992 ), the properties
f radial modes of QSs were investigated. Furthermore, the study 
f radial oscillations of zero-temperature NSs can be extended to 
roto-NSs (Gondek, Haensel & Zdunik 1997 ). Because the EOS of
roto-NSs is significantly softer than that of zero-temperature NSs, 
heir spectra of the radial oscillation modes are very different. It is
orth noting that Kokkotas & Ruoff ( 2001 ) presented a useful surv e y
n the radial oscillation modes of NSs for various EOSs. Based on
he equations presented by Misner, Thorne & Wheeler ( 1973 ), they
howed that the derivatives in the linear differential equation can 
e written in the form of a self-adjoint differential operator. In this
ork, we calculate the frequencies of the first three radial modes 
f SSs using the method of the self-adjoint differential operator 
Kokkotas & Ruoff 2001 ). By that we can investigate the properties
f radial oscillations of SSs in detail and study the stability of SSs
igorously. 

Non-radial oscillations of relativistic stars were studied in the 
ioneering work of Thorne & Campolattaro ( 1967 ). The oscillation 
odes are damped out due to the emission of GWs, so these

scillation modes are called quasi-normal modes (QNMs). For 
ypical non-rotating relativistic fluid stars, QNMs are classified in 
olar and axial categories. The polar modes include the fundamental 
f), pressure (p), and gravity (g) modes. The axial modes only have
he space–time ( w) modes, which are directly associated with the 
pace–time metric and have no analogy in the Newtonian theory of
tellar pulsations (Kokkotas & Schutz 1992 ). A detailed discussion 
bout the relativistic perturbation equations was given in many 
orks (see e.g. Lindblom & Detweiler 1983 ; Detweiler & Lindblom 

985 ; Chandrasekhar & Ferrari 1991 ; Allen et al. 1998 ; Kokkotas &
chmidt 1999 ). Using the Cowling approximation (Cowling 1941 ), 
otani et al. ( 2011 ) calculated non-radial oscillations of NSs with
adron–quark mixed phase transition. Besides, Done v a & Yazadjiev 
 2012 ) investigated non-radial oscillations of anisotropic NSs with 
olytropic EOSs. In Das et al. ( 2021 ), the impact of the dark matter
n the f mode was also studied. 
The f mode of NSs, QSs, and SSs is important for several reasons:

i) it depends on the EOS of compact stars; (ii) it is expected to be
 xcited in man y astrophysical scenarios and leads to efficient GW
mission; (iii) its frequency is lower than other QNMs such as that
f the p modes and the w modes, hence the f-mode oscillation is
ost likely to be detectable with a third-generation detector like 

he Einstein Telescope and the Cosmic Explorer (Punturo et al. 
010 ; Sathyaprakash et al. 2019 ; Kalogera et al. 2021 ), or even
n an optimal case by the current generation LIGO/Virgo/KAGRA 

etectors (Abbott et al. 2019b , 2022 ; Abe et al. 2022 ). In this work, we
alculate the f-mode frequency of SSs in the Cowling approximation 
nd compare the results with those of NSs and QSs. 

GW observation will be a powerful tool to study the EOS of
ompact stars in particular in the case that we have good empirical
ormulas for the QNMs as functions of stellar parameters. Indeed, 
niversal empirical formulas relating the dynamical responses of 
 compact star under external perturbations – such as the f-mode 
requency, the tidal and rotational deformations – to its global 
hysical parameters – such as the mass, the radius, and the moment
f inertia – have been discovered for NSs and QSs. For example,
he I–Lo v e–Q relations, disco v ered by Yagi & Yunes ( 2013a , b ),
elate the moment of inertia I , the tidal deformability λ, and
he spin induced quadrupole moment Q . Another example is the
elation for the f-mode frequency, the moment of inertia, and the
idal deformability (see e.g. Chan et al. 2014 ). Sotani & Kumar
 2021 ) have investigated v arious uni versal relations between several
scillation modes and the tidal deformability. Inspired by works on 
he universal relations for single NSs (Andersson & Kokkotas 1998 ;
enhar et al. 2004 ; Done v a et al. 2013 ; Yagi & Yunes 2013a , b ),

ecent studies have investigated various universal relations between 
he binary tidal deformability and the f-mode frequency of the post-
erger remnant of a binary NS system using numerical relativity 

imulations (Bernuzzi, Dietrich & Nagar 2015b ; Rezzolla & Takami 
016 ; Kiuchi et al. 2020 ). It is worth noting that Kr ̈uger & Kokkotas
 2020b ) and Manoharan, Kr ̈uger & Kokkotas ( 2021 ) calculated the
-mode frequency for fast-rotating NSs without using the Cowling 
pproximation, and disco v ered a relation between the pre-merger 
idal deformability and the dominant oscillation frequency (i.e. f- 

ode) of the post-merger remnant of a binary NS system. Meanwhile,
sing the universal relation of f mode (Kr ̈uger & Kokkotas 2020b ;
anoharan et al. 2021 ), V ̈olkel, Kr ̈uger & Kokkotas ( 2021 ) and
 ̈olkel & Kr ̈uger ( 2022 ) studied the Bayesian inverse problem of

otating NSs. In this work, we will study the universal relation
etween the f-mode frequency and the tidal deformability of SSs, 
hich will be a useful input for comparisons among NSs, QSs, and
Ss. 
The paper is organized as follows. In Section 2 , we introduce the

OS of SSs and obtain the structure of non-rotating SSs. Based on
he background solutions, in Section 3 , we integrate the equations of
elativistic radial oscillations to determine the f-mode frequency for 
ifferent EOSs of SSs. In Section 4 , we calculate the frequency
f non-radial f mode and the tidal deformability of SSs. New fits of
niversal relation between them are discussed. Finally, we summarize 
ur work in Section 5 . 
Throughout the paper, we adopt geometric units with c = G =

, where c and G denote the speed of light and the gravitational
onstant, respectively. The metric signature is ( − , + , + , + ). 

 EQUATI ON  O F  STATE  A N D  S T RU C T U R E  O F  

PHERI CAL  STATIC  STARS  

e assume that the interaction potential between two strangeons is 
escribed by the Lennard–Jones potential (Jones 1924 ; Lai & Xu
009 ; Gao et al. 2022 ), 

 ( r) = 4 ε

[(σ

r 

)12 
−

(σ

r 

)6 
]

, (1) 

here ε is the depth of the potential, r is the distance between
wo strangeons, and σ is the distance when u ( r ) = 0. We note that
his potential has the property of short-distance repulsion and long- 
istance attraction. 
According to the results of early studies (Xu 2003 ; Lai & Xu 2009 ;

ao et al. 2022 ), the potential energy density is given by 

p = 2 ε
(
A 12 σ

12 n 5 − A 6 σ
6 n 3 

)
, (2) 

here A 12 = 6.2, A 6 = 8.4, and n is the number density of strangeons.
he total energy density of zero-temperature dense matter composed 
MNRAS 516, 6172–6179 (2022) 
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Figure 1. Relations between mass–energy density ρ and pressure P for NSs, 
QSs, and SSs. 
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Figure 2. Mass–radius relations of SSs with different combinations of the 
surface baryonic density n s and the potential depth ε. For comparison, we also 
show the mass–radius relations for selected NSs and QSs. The 1 σ regions of 
the mass measurements in PSRs J0348 + 0432 (Antoniadis et al. 2013 ) and 
J0740 + 6620 (Fonseca et al. 2021 ) are illustrated. 
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f strangeons reads 

= 2 ε
(
A 12 σ

12 n 5 − A 6 σ
6 n 3 

) + nN q m q , (3) 

here N q m q is the mass of a strangeon with N q being the number
f quarks in a strangeon and m q being the quark mass. In the abo v e
quation, the contributions from degenerate electrons and vibrations
f the lattice are neglected. From the first law of thermodynamics,
ne derives the pressure 

 = n 2 
d( ρ/n ) 

d n 
= 4 ε

(
2 A 12 σ

12 n 5 − A 6 σ
6 n 3 

)
. (4) 

t the surface of SSs, the pressure becomes zero and we obtain
he surface number density of strangeons as [ A 6 /(2 A 12 σ

6 )] 1/2 . For
onvenience, we transform it to the number density of baryons 

 s = 

(
A 6 

2 A 12 

)1 / 2 
N q 

3 σ 3 
. (5) 

F or a giv en number of quarks N q in a strangeon, the EOS of SSs is
ompletely determined by the depth of the potential ε and the number
ensity of baryons n s at the surface of the star. An 18-quark cluster,
alled quark-alpha (Michel 1991 ), can be completely symmetric in
pin, fla v our, and colour spaces. Therefore, we set N q = 18 in our
alculation as a reasonable example. 

Besides the EOS of SSs, we also consider six EOSs of NSs and
Ss for comparison, including four popular nuclear matter EOSs

or NSs, AP4 (Akmal & Pandharipande 1997 ), SLy4 (Douchin &
aensel 2001 ), MS0, and MS2 (Mueller & Serot 1996 ), as well

s two QS models, the MIT bag model with a bag constant B =
0 MeV fm 

−3 (Alcock et al. 1986 ) and SQM3 (Lattimer & Prakash
001 ). 1 The corresponding density–pressure relations for these EOSs
re depicted in Fig. 1 . We denote the EOSs of SSs using their values
f n s and ε. For example, ‘LX2430’ means a surface baryon number
ensity n s = 0 . 24 fm 

−3 and a potential depth ε = 30 MeV . 
We consider the unperturbed relativistic star to be described

y a perfect fluid. The energy–momentum tensor is T μν = ( ρ +
 ) u μu ν + P g μν . The static and spherically symmetric metric,
NRAS 516, 6172–6179 (2022) 

 Note that the nucleonic EOSs, MS0, and MS2 have similar properties as SSs 
f higher maximum masses. 

2  

M  

(  

i

hich describes an equilibrium relativistic star, is given by the line
lement, 

 s 2 = −e 2 � d t 2 + e 2 	 d r 2 + r 2 (d θ2 + sin 2 θd φ2 ) , (6) 

here � and 	 are metric functions of r . A mass function m ( r ) is
efined as m ( r ) = r (1 − e −2 	 )/2, which satisfies 

d m 

d r 
= 4 πr 2 ρ, (7) 

here ρ is the energy density. The Tolman–Oppenheimer–Volkoff
quations that determine the pressure P ( r ) and the metric function
 ( r ) are expressed as 

d P 

d r 
= −( ρ + P ) 

d � 

d r 
, (8) 

d � 

d r 
= 

m + 4 πr 3 P 

r( r − 2 m ) 
. (9) 

ntegrating equations ( 7 ), ( 8 ), and ( 9 ) combined with the EOS, one
btains the stellar structure of spherical stars and the space–time
eometry. In Fig. 2 , we show the mass–radius relations for NSs,
Ss, and SSs using the aforementioned EOSs. The EOSs of SSs

re very stiff because the strangeons are non-relativistic and there
s a very strong repulsion at a short intercluster distance (Gao et al.
022 ), which leads to the maximal masses o v er 3 M �. In contrast,
he quarks are relativistic and nearly free for QSs, so the EOSs
re soft and the maximal masses only reach 2 M � marginally. The
bservations of the massive pulsars, PSRs J0348 + 0432 (Antoniadis
t al. 2013 ) and J0740 + 6620 (Fonseca et al. 2021 ), at ∼ 2 M � via
ulsar timing support the stiff properties of the EOS. More massive
nes (e.g. ≥ 2 . 5 M �) are expected in our model for future disco v ery.
he GWs from the binary NS inspiral, GW170817, gave constraints
n the tidal deformability for the first time (Abbott et al. 2017 , 2018 ,
019a ), which rules out se veral stif f EOSs (e.g. EOSs MS0 and
S2) and models of SSs with very low surface baryonic densities

say, LX2430 and LX2450) at a 90 per cent credible level (see fig. 18
n Gao et al. 2022 ). 
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Figure 3. Relation between the adiabatic index � and the mass–energy 
density ρ for NSs, QSs, and SSs. 

Figure 4. The frequencies of the fundamental mode, ν0 , and the first two 
excited modes, ν1 and ν2 , of radial oscillation, as functions of the central 
density ρc for NSs and QSs. 
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 R A D I A L  OSC ILLATIONS  

n this section, we study radial oscillations of SSs. We denote the
adial displacement of a fluid element as δr ( r , t ) and its harmonic
scillation mode with circular frequency ω as δr ( r , t ) = X ( r ) e i ωt . To
btain the discrete set of oscillation frequencies of SSs, we adopt the
erturbation equations in Kokkotas & Ruoff ( 2001 ). In practice, we
efine a new variable ζ = r 2 e −� X . The master equation for radial
scillations is expressed as 

d 

d r 

(
P 

d ζ

d r 

)
+ 

(
Q + ω 

2 W 

)
ζ = 0 , (10) 

here 

r 2 P = �P e ( 	 + 3 � ) , 

r 2 Q = e ( 	 + 3 � ) ( ρ + P ) 

[
( � 

′ ) 2 + 4 
� 

′ 

r 
− 8 πe 2 	 P 

]
, 

 

2 W = ( ρ + P ) e (3 	 + � ) . (11) 

y setting η = Pζ ′ , one obtains the following coupled differential 
quations, 

d ζ

d r 
= 

η

P 

, (12) 

d η

d r 
= −(

ω 

2 W + Q 

)
ζ. (13) 

t the centre of the star, the boundary condition is 3 ζ0 = η0 / P 0 ,
here ζ 0 and η0 are the values of ζ and η at r = 0, respectively

Kokkotas & Ruoff 2001 ). By setting η0 = 1, we have ζ0 = 1 / 3 P 0 ,
here P 0 = �P (0) e ( 	 (0) + 3 � (0)) . At the star surface r = R , the
ressure perturbation must vanish, namely � P = 0, which provides 
nother boundary condition, �P ζ ′ = 0. Equations ( 12 ) and ( 13 )
ith the abo v e two boundary conditions form a two-point bound-

ry value problem of the Sturm–Liouville type with eigenvalues 
 

2 
0 < ω 

2 
1 < ω 

2 
2 < · · · (Shapiro & Teukolsky 1983 ), where ω 0 is the

igenfrequency of the f mode. If ω 

2 
0 > 0, all the eigenfrequencies of

he oscillation modes are real, which indicates that the equilibrium 

tellar model is dynamically stable (Chandrasekhar 1964a , b ; Misner
t al. 1973 ). The period of the f mode is given by τ 0 = 1/ ν0 = 2 π / ω 0 ,
here ν0 is the ordinary or temporal frequenc y. Inv ersely, ω 

2 
0 < 0

orresponds to an exponentially growing unstable radial oscillation. 
For adiabatic oscillations, the adiabatic index governing the 

erturbations is defined by (Kokkotas & Ruoff 2001 ) 

 = 

ρ + P 

P 

d P 

d ρ
, (14) 

hich is equal to the adiabatic inde x go v erning the equilibrium
ressure–energy density relation. The relation between the adiabatic 
ndex � and the mass–energy density ρ is shown in Fig. 3 . We note
hat the adiabatic indices for QSs and SSs are qualitatively different 
rom that of NSs at low density. Moreo v er, SSs generally hav e a
arger adiabatic index than NSs and QSs, indicating that the EOSs of
Ss are stiffer (Gao et al. 2022 ). 
In Fig. 4 , we present the f-mode frequency ν0 and the frequencies

f the first two excited modes, ν1 and ν2 , for SLy4, AP4, and the MIT
ag model. Our results for NSs reproduce the results of Kokkotas &
uoff ( 2001 ). We observe that f mode becomes unstable (i.e. ω 

2 
0 

ecoming ne gativ e) for central densities abo v e 2 . 83 × 10 15 , 2 . 70 ×
0 15 , and 2 . 05 × 10 15 g cm 

−3 for three EOSs. The instability point
orresponds to maximal masses 2 . 04, 2 . 21, and 1 . 96 M � for SLy4,
P4, and the MIT bag model, respectively. It is worth noting that

he f-mode frequency of the MIT bag model behav es v ery different
rom that of NSs at low central density, rooting in the self-bound and
ravity-bound nature of QSs and NSs, respectively. 
To further explore the results for QSs, SSs, and NSs, we note
hat with a low central density, the star can be approximated as a
omogeneous non-relativistic star (Shapiro & Teukolsky 1983 ), so 
hat the angular frequency ω 0 of the f mode reads ω 

2 
0 = 4 πρ(4 � −

) / 3. Using the relations between the density and the adiabatic index
hown in Fig. 3 , we do expect the frequency ω 0 to diverge as the
ensity approaches a minimal value for QSs and SSs. For NSs, the
diabatic index does not change significantly as the density decreases. 
herefore for NSs, ω 0 tends to zero mildly when the central density
f the star is sufficiently low. Indeed, these points are confirmed in
ig. 4 . 
In Fig. 5 , we show the ordinary frequency ν0 of the f mode versus

he mass of the stars for SSs and one EOS of QSs. The curves of SSs
ave the same trend as that of QSs, with ν0 going to zero at their
aximal masses. Ho we ver, ν0 for SSs is larger than that of QSs for
MNRAS 516, 6172–6179 (2022) 
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Figure 5. The frequencies of the fundamental mode ν0 as functions of the 
mass M for QSs and SSs. 
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 given mass, which arises from the fact that SSs’ EOSs are much
tiffer than that of QSs. 

 N O N - R A D I A L  OSCILLATIONS  

n this section, we study non-radial oscillations of a non-rotating
S in the Cowling approximation, in which the space–time metric

s kept to be the static spherical background solution in the so-
alled Cowling approximation (Cowling 1941 ). The fluid Lagrangian
isplacement vector is given by 

i = 

(
e −	 W , −V ∂ θ , −V sin −2 θ∂ φ

)
r −2 Y �m 

, (15) 

here W and V are functions of t and r , while Y � m is the spherical
armonic function. Then the perturbation of the four-velocity, δu μ,
an be written as 

u 

μ = 

(
0 , e −	 ∂ t W , −∂ t V ∂ θ , −∂ t V sin −2 θ∂ φ

)
r −2 e −� Y �m 

. (16) 

Assuming a harmonic dependence on time, the perturbative
ariables can be written as W ( t , r ) = W ( r ) e i ωt and V ( t , r ) = V ( r ) e i ωt .
e can obtain the following system of equations for the fluid

erturbations (see Sotani et al. 2011 ; Done v a & Yazadjiev 2012 ;
azadjiev & Doneva 2012 , for a detailed variational derivation), 

d W 

d r 
= 

d ρ

d P 

[
ω 

2 r 2 e 	 −2 � V + 

d � 

d r 
W 

]
− � ( � + 1) e 	 V , (17) 

d V 

d r 
= 2 

d � 

d r 
V − e 	 

W 

r 2 
. (18) 

The boundary condition at the centre of the star can be
arametrized as, W = Ar l + 1 and V = −Ar l / l , with A being an arbitrary
onstant. It can be obtained by examining the behaviour of W and
 in the vicinity of r = 0. At the surface of the star, the perturbed
ressure must vanish, which provides 

 

2 e 	 ( R ) −2 � ( R ) V ( R ) + 

1 

R 

2 

d � 

d r 

∣∣∣
r= R 

W ( R ) = 0 . (19) 

In full general relativity, each QNM is characterized by a complex
igenfrequency ω = ω r + i ω i (Thorne & Campolattaro 1967 ). The
eal part ω r corresponds to the mode frequency, and the imaginary
art ω i gives the damping time τ ≡ 1/ ω i due to GW emission.
o we ver, in the Cowling approximation, we obtain normal modes
f oscillation and there is no emission of GWs. For a non-rotating
tellar model, the Cowling approximation leads to a relative error

10–30 per cent for the f mode (Chirenti, de Souza & Kastaun
NRAS 516, 6172–6179 (2022) 
015 ; Sotani & Dohi 2022 ). For higher modes, the relative error is
maller (Yoshida & Kojima 1997 ). 

.1 F-mode frequency 

ow we calculate the ordinary frequency ν0 of the f mode for the l =
 non-radial oscillation, and study its relation with the mass M , the
ompactness C = M / R , and the dimensionless tidal deformability 	
or NSs, QSs, and SSs. 

The frequenc y ν0 v ersus mass M for NSs and QSs is shown in
he top panel of Fig. 6 . By increasing the mass of the star, the
requency ν0 increases significantly for NSs, while it does not
hange much for QSs. This can be understood by noticing that
Ss are self-bound by strong interaction and the density in the

nterior of the star does not change too much as the mass increases.
his is in contrast to NSs that are gravitationally bound. From the
gure, we can see that the values of ν0 at the maximal masses of
Ss and QSs are 2.907, 2.823, 2.562, and 2 . 597 kHz for SLy4,
P4, SQM3, and the MIT bag model with B = 60 MeV fm 

−3 ,
espectively. 

Additionally, the frequenc y ν0 v ersus mass M for SSs is shown
n the bottom panel of Fig. 6 . We find that the curves of SSs are
imilar to those of QSs only that the frequency ν0 for SSs extends a
uch wider range. The values of ν0 at the maximal masses of SSs

re 6.676, 6.832, 7.977, and 8 . 684 kHz for the EOSs of SSs with
if ferent v alues of n s and ε that we use in the figure. Compared
ith QSs and NSs, these values are much larger, and it could be an

ndicator to distinguish EOSs via GW observations. 
We show in Fig. 7 the relation between the frequency ν0 and the

ompactness of the stars. It might be useful to note that the values
f the maximal compactness, C max , are 0.21, 0.23, 0.19, and 0.19 for
Ly4, AP4, SQM3, and the MIT bag model with B = 60 MeV fm 

−3 ,
especti vely. In contrast, the v alue of C max for SSs with different
alues of n s and ε is about the same, C max � 0.27. This maximal
alue of the compactness represents the limit of how stiff EOSs of
Ss can be due to the repulsive hardcore and the non-relativistic
ature of strangeons. 
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Figure 7. The frequency ν0 of the f mode as a function of the compactness, 
C = M / R , for NSs and QSs (top) and SSs (bottom). 

Figure 8. Scaled frequency of the f mode as a function of the compactness 
C . The solid lines represent universal relations in equations ( 20 ) and ( 21 ). 
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.2 Uni v ersal relations 

o reveal the internal characters of NSs and assist rele v ant data
nalysis, universal relations between the f-mode, p-mode, and w- 
ode frequencies and the mass or the radius of NSs have been

nvestigated (Andersson & Kokkotas 1996 , 1998 ; Benhar, Berti & 

errari 1999 ; Benhar et al. 2004 ; Tsui & Leung 2005 ). Moti v ated
y possible observations of the moment of inertia I of NSs, Lau,
eung & Lin ( 2010 ) used the moment of inertia to replace the
ompactness and disco v ered EOS-independent relations in QNMs 
f NSs and QSs. Similar results were shown in Chirenti et al. ( 2015 ).
hese relations can be used to infer the stellar parameters – mass,

adius, and possibly the EOS – from QNM data with future GW 

etectors. 
Using the Cowling approximation, Sotani et al. ( 2011 ) calculated 

on-radial oscillations of NSs with hadron–quark mixed phase 
ransition, and disco v ered an approximate formula. Inspired by 
he universal relation between the f mode and the compactness 
 (Sotani et al. 2011 ), we show the scaled frequency of the f mode
ersus the compactness C for NSs, QSs, and SSs in Fig. 8 . In
articular, as shown by the solid lines in the figure, the universal
elation for NSs can be represented by the following empirical 
ormula: 

ν0 = a I + b I 

(M 

R 

)
+ c I 

(M 

R 

)2 
+ d I 

(M 

R 

)3 
, (20) 

ith a I = −0.012, b I = 19.48, c I = 71.3, and d I = −125, while for
Ss, we found a new universal relation, 

ν0 = a II + b II 

(M 

R 

)
+ c II 

(M 

R 

)2 
+ d II 

(M 

R 

)3 

+ e II 

(M 

R 

)4 
+ k II 

(M 

R 

)5 
, (21) 

ith a II = −2.795, b II = 1.941 × 10 2 , c II = −3.834 × 10 3 , d II =
.789 × 10 4 , e II = −1.601 × 10 5 , and k II = 2.531 × 10 5 . We
an observe that the behaviour of the f-mode frequencies for the
Ss is very different from the NSs and QSs, especially when the
ompactness is larger than ∼0.15, where the f-mode frequency from 

Ss is much larger than that of QSs and NSs. It can be an important
smoking gun’ signal for SSs. 

For tidally deformed relativistic stars, the quadrupole tidal de- 
ormability gives important information about the stellar structure. 
o characterize the deformation of the star, one usually defines the

idal deformability via Q ij ≡ −λE ij , where E ij is the external tidal
eld and Q ij is the induced traceless quadrupole moment tensor 
f stars (Hinderer 2008 ; Hinderer et al. 2010 ). The parameter λ is
elated to the l = 2 Lo v e number k 2 via k 2 = 3 λR 

−5 /2. Besides,
he dimensionless tidal deformability 	 , defined as 	 = 2 k 2 C 

−5 /3,
s also commonly used. We note that the tidal deformability is
roportional to the fifth power of the radius R . Therefore, constraining 
r measuring tidal deformability can provide important information 
n the EOS (Abbott et al. 2018 , 2019a ), as well as test gravity
heories (Hu et al. 2021 ; Xu, Gao & Shao 2022 ). The influence
f tidal on the phase of GW in the inspiral stage is predominantly
ependent on the Lo v e number k 2 , and the effect enters at the fifth
ost-Newtonian (PN) order (Flanagan & Hinderer 2008 ). 
In Fig. 9 , we display the relation between the frequency of the f
ode and the dimensionless tidal deformability, 	 , for NSs, QSs, and 
Ss. It is seen that the frequency decreases with 	 . It is understood

hat the more compact the star becomes the harder it can be deformed.
or SSs, as the potential depth ε increases and the surface baryonic
ensity n s decreases, the EOS becomes stiffer, which leads to larger
idal deformability and f-mode frequency. 
MNRAS 516, 6172–6179 (2022) 
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M

Figure 10. Scaled frequency of the f-mode M ν0 as a function of the tidal 
quadrupolar ( l = 2) coupling constant κt 

2 for NSs, QSs, and SSs. The solid 
line represents the best power-law fit in κt 

2 to the scaled frequencies of the 
NSs, QSs, and SSs. 
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For binary NSs of masses M a and M b , the dimensionless tidal
oupling constant is defined as (Bernuzzi et al. 2014 , 2015a , b ) 

t 
2 = 2 

[ 

q 

(
X a 

C a 

)5 

k a 2 + 

1 

q 

(
X b 

C b 

)5 

k b 2 

] 

, (22) 

here q = M b / M a ≤ 1, X a = M a /( M a + M b ), and C i and k i 2 ( i =
 , b ) are the compactness and the quadrupole Lo v e number of each
tar. If we consider a binary system with non-rotating equal-mass
onfiguration, the dimensionless tidal coupling constant is given by
t 
2 = k 2 / 8 C 

5 = 3 	/ 16. 
Inspired by the universal relation between the dimensionless

idal coupling constant and the f-mode frequency (Chakravarti &
ndersson 2020 ), the relation between M ν0 and κt 

2 for NSs, QSs,
nd SSs are shown in Fig. 10 . For NSs and QSs, we find the
caled frequency of the f mode approximately satisfies the following
elation, 

 ν0 = 0 . 184( κt 
2 ) 

−0 . 016 − 0 . 154 . (23) 

or SSs, the universal relation is 

 ν0 = 0 . 071( κt 
2 ) 

−0 . 266 . (24) 

he universal relations for QSs and SSs will complement that of
Ss, and play a role in GW data analysis (Dietrich, Bernuzzi &
ichy 2017 ). 

 C O N C L U S I O N S  

n this paper, we use the Lennard–Jones model to describe the EOS
f SSs with two parameters, the number density at the surface of the
tar n s and the potential depth ε. Compared to the MIT bag model of
Ss, the EOS of SSs is much stiff due to the non-relativistic nature
f the particles and the compressed repulsive hardcore at a small
ntercluster distance. Following earlier work (Lai & Xu 2009 ; Gao
t al. 2022 ), we calculate the mass and radius relation for SSs for
if ferent v alues of n s and ε, and find that the maximal mass of SSs is
igher than that of NSs and QSs. This serves as background solutions
or perturbation studies of various oscillation modes. 

To study radial oscillations of SSs, for the first time we calculate
he frequency of the radial modes for SSs with different combinations
f n s and ε. The results are compared with that of NSs and QSs. We
isco v er that radial oscillations of SSs are similar to those of QSs
NRAS 516, 6172–6179 (2022) 
 ut beha v e v ery differently from those of NSs, especially for stars
ith low central energy densities or small masses. For QSs and
Ss, the frequencies of radial oscillations tend to infinity when the
entral energy density approaches the minimal value ρmin , which
orresponds to the pressure being zero. This can be understood by
pproximating the stars in the non-relativistic regime and noticing
hat the adiabatic index � for SSs and QSs goes to infinity as the
ensity decreases to its minimal value. 
For non-radial oscillations of SSs, we calculate the frequency of

he f mode for l = 2 component using the Cowling approximation,
nd obtain the universal relations between the f-mode frequency and
ther global parameters of the spherical SSs. As recently proposed
n Gao et al. ( 2022 ), where the I–Lo v e–Q univ ersal relations for SSs
ere studied, the universal relation of the f-mode frequency for SSs

s also ready to be used for various purposes in GW astrophysics
n volving compact stars. W ith application to data in the future,
ossible constraints can be set on the parameter space of the Lennard–
ones model, namely the n s –ε plane, using GW observations of the
NMs from compact stars. 
There can be several interesting extensions of our work. First,

ur study of non-radial oscillations uses the Cowling approxima-
ion (Cowling 1941 ), which considers only the fluid perturbation.
n principle, one should also allow the space–time metric to be
erturbed, and thus one can obtain QNMs instead of normal modes.
ext, we w ould lik e to further investigate how dynamical tides

ffect the frequency of the f mode in compact binary systems. NSs
ave certain spins and the rotation rate may reach extreme values,
specially for nascent or remnant objects following a binary merger.
rom the perspective of detecting oscillation modes with GWs, the
ost rele v ant scenarios are likely to involve rapidly rotating NSs. An

mportant step in this direction has been carried out using perturbation
heory in general relativity with the Cowling approximation (Kr ̈uger,
aertig & Kokkotas 2010 ; Gaertig & Kokkotas 2011 ; Done v a

t al. 2013 ). In the next step, we can study the oscillation modes
f rapidly rotating SSs in the Cowling approximation based on
xisting work. Recently, Kr ̈uger & Kokkotas ( 2020a , b ), managed
o calculate the oscillations and instabilities of relativistic stars
sing perturbation theory without the Cowling approximation. The
scillation spectrum, universal relations involving f mode, and the
ritical values for the onset of the secular Chandrasekhar–Friedman–
chutz instability are studied in great detail. Further, Manoharan et al.
 2021 ) inv estigated univ ersal relations for binary NS mergers with
ong-lived remnants. By considering the oscillations of the rapidly
otating merger remnant, they proposed an approach to relate the pre-
erger tidal deformability to the ef fecti ve compactness of the post-
erger remnant. Those studies are important to probe the EOS of
Ss with GW asteroseismology. Therefore, to study the oscillations
f rapidly rotating SSs without the Cowling approximation is an
mportant goal worth pursuing. 
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