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ABSTRACT

The strong interaction at low-energy scales determines the equation of state (EOS) of supranuclear matters in neutron stars
(NSs). It is conjectured that the bulk dense matter may be composed of strangeons, which are quark clusters with nearly equal
numbers of u, d, and s quarks. To characterize the strong-repulsive interaction at short distance and the non-relativistic nature
of strangeons, a phenomenological Lennard—Jones model with two parameters is used to describe the EOS of strangeon stars
(SSs). For the first time, we investigate the oscillation modes of non-rotating SSs and obtain their frequencies for various
parametrizations of the EOS. We find that the properties of radial oscillations of SSs are different from those of NSs, especially
for stars with relatively low central energy densities. Moreover, we calculate the f-mode frequency of non-radial oscillations of
SSs within the relativistic Cowling approximation. The frequencies of the f mode of SSs are found to be in the range 6.7-8.7 kHz.
Finally, we study the universal relations between the f-mode frequency and global properties of SSs, such as the compactness
and the tidal deformability. The results we obtained are relevant to pulsar timing and gravitational waves, and will help to probe

NSs’ EOSs and infer non-perturbative behaviours in quantum chromodynamics.
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1 INTRODUCTION

The equation of state (EOS) of nuclear dense matter plays a crucial
role in many astrophysical phenomena associated with neutron
stars (NSs; Lattimer & Prakash 2007; Ozel, Baym & Guver 2010;
Abbott et al. 2018). Owing to the non-perturbative properties of
the strong interaction at low energy, the EOS of dense matters
at several nuclear densities still remains unknown. Witten (1984)
conjectured that the true ground state of the dense matter is quark
matter composed of almost free u, d, and s quarks. The pulsar-like
compact objects should be quark stars (QSs) rather than conventional
NSs. The MIT bag model with almost free quarks (Alcock, Farhi &
Olinto 1986) and the colour-superconductivity state model (Alford
et al. 2008) have been used in literature to study QSs. In 2003, Xu
(2003) proposed that the constituting units of the supranuclear matter
could be strange quark clusters, since the non-perturbative strong
interaction may render quarks grouped in clusters. Each quark cluster
is composed of several quarks (including u, d, and s flavours)
condensing in position space rather than in momentum space. A
name ‘strangeon’ is coined to these strange ‘nucleons’ (Lai & Xu
2017; Xu & Guo 2017). In this sense, compressed baryonic matter
could be in a state of strangeons, and pulsar-like compact stars could
thus be strangeon stars (SSs).

Strangeon matter, similar to strange quark matter, is composed
of nearly equal numbers of u, d, and s quarks. However, different
from strange quark matter, quarks in strangeon matter are localized
inside strangeons due to the strong coupling between quarks. There
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are differences and similarities among NSs, QSs, and SSs. On the
one hand, quarks are thought to be localized in strangeons in SSs,
like neutrons in NSs. On the other hand, a strangeon, with light-
flavour symmetry restoration of quark, may contain more than three
valence quarks. In addition, the matter at the surface of SSs is
strangeon matter, i.e. SSs are self-bound by the strong force, like
QSs (Xu 2003). These properties are fundamental to a few important
astrophysical observables. A sophisticated study on various global
parameters of rotating SSs, including mass, radius, moment of inertia,
tidal deformability, quadrupole moments, and shape parameters, was
carried out by Gao et al. (2022).

SSs can account for many current observational facts in astro-
physics. The EOS of SSs could be very stiff to explain the observed
massive pulsars (Demorest et al. 2010; Antoniadis et al. 2013). The
magnetospheric activity of SSs was discussed in Xu, Qiao & Zhang
(1999). Lu et al. (2019) explained the sub-pulse drifting of radio
pulsars using the properties at the surface of SSs. Also, pulsar glitches
could be the result of star quakes (Peng & Xu 2008; Zhou et al. 2004,
2014), and a detailed modelling of the glitch behaviours confronted
with observations was discussed in Lai et al. (2018b). The model of
SSs can be extended to explain the glitch activity of normal radio
pulsars (Wang et al. 2020). Recent studies (Lai et al. 2018a, 2021;
Lai, Zhou & Xu 2019) have investigated the tidal deformability as
well as the ejecta and light curve of merging binary SSs, showing
consistency with the observations of the gravitational wave (GW)
event GW170817 (Abbott et al. 2017) and its multiwavelength elec-
tromagnetic counterparts (Kasen et al. 2017; Kasliwal et al. 2017).

Owing to the difficulties in determining the EOS of pulsar-like
compact stars from first principles, observations from different
channels become important avenues in studying the EOS at high
density, which can in turn be used to constrain microscopic laws (Ozel
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et al. 2010). In this respect, GW asteroseismology that deals with
oscillation modes offers a promising channel in the new era of
GWs (Andersson & Kokkotas 1998; Benhar, Ferrari & Gualtieri
2004; Doneva et al. 2013; Andersson 2019). It is the focus of this
study.

Radial oscillations of stellar models were studied in the pioneering
works of Chandrasekhar (1964a,b). Notably, the properties of radial
oscillations can give information about the stability and the EOS of
compact stars. The first exhaustive compilation of radial oscillations
for different zero-temperature EOSs was presented by Glass &
Lindblom (1983). In Vaeth & Chanmugam (1992), the properties
of radial modes of QSs were investigated. Furthermore, the study
of radial oscillations of zero-temperature NSs can be extended to
proto-NSs (Gondek, Haensel & Zdunik 1997). Because the EOS of
proto-NSs is significantly softer than that of zero-temperature NSs,
their spectra of the radial oscillation modes are very different. It is
worth noting that Kokkotas & Ruoff (2001) presented a useful survey
on the radial oscillation modes of NSs for various EOSs. Based on
the equations presented by Misner, Thorne & Wheeler (1973), they
showed that the derivatives in the linear differential equation can
be written in the form of a self-adjoint differential operator. In this
work, we calculate the frequencies of the first three radial modes
of SSs using the method of the self-adjoint differential operator
(Kokkotas & Ruoff 2001). By that we can investigate the properties
of radial oscillations of SSs in detail and study the stability of SSs
rigorously.

Non-radial oscillations of relativistic stars were studied in the
pioneering work of Thorne & Campolattaro (1967). The oscillation
modes are damped out due to the emission of GWs, so these
oscillation modes are called quasi-normal modes (QNMs). For
typical non-rotating relativistic fluid stars, QNMs are classified in
polar and axial categories. The polar modes include the fundamental
(), pressure (p), and gravity (g) modes. The axial modes only have
the space—time (w) modes, which are directly associated with the
space—time metric and have no analogy in the Newtonian theory of
stellar pulsations (Kokkotas & Schutz 1992). A detailed discussion
about the relativistic perturbation equations was given in many
works (see e.g. Lindblom & Detweiler 1983; Detweiler & Lindblom
1985; Chandrasekhar & Ferrari 1991; Allen et al. 1998; Kokkotas &
Schmidt 1999). Using the Cowling approximation (Cowling 1941),
Sotani et al. (2011) calculated non-radial oscillations of NSs with
hadron—quark mixed phase transition. Besides, Doneva & Yazadjiev
(2012) investigated non-radial oscillations of anisotropic NSs with
polytropic EOSs. In Das et al. (2021), the impact of the dark matter
on the f mode was also studied.

The f mode of NSs, QSs, and SSs is important for several reasons:
(1) it depends on the EOS of compact stars; (ii) it is expected to be
excited in many astrophysical scenarios and leads to efficient GW
emission; (iii) its frequency is lower than other QNMs such as that
of the p modes and the w modes, hence the f-mode oscillation is
most likely to be detectable with a third-generation detector like
the Einstein Telescope and the Cosmic Explorer (Punturo et al.
2010; Sathyaprakash et al. 2019; Kalogera et al. 2021), or even
in an optimal case by the current generation LIGO/Virgo/KAGRA
detectors (Abbottet al. 2019b, 2022; Abe et al. 2022). In this work, we
calculate the f-mode frequency of SSs in the Cowling approximation
and compare the results with those of NSs and QSs.

GW observation will be a powerful tool to study the EOS of
compact stars in particular in the case that we have good empirical
formulas for the QNMs as functions of stellar parameters. Indeed,
universal empirical formulas relating the dynamical responses of
a compact star under external perturbations — such as the f-mode
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frequency, the tidal and rotational deformations — to its global
physical parameters — such as the mass, the radius, and the moment
of inertia — have been discovered for NSs and QSs. For example,
the I-Love—Q relations, discovered by Yagi & Yunes (2013a,b),
relate the moment of inertia /, the tidal deformability A, and
the spin induced quadrupole moment Q. Another example is the
relation for the f-mode frequency, the moment of inertia, and the
tidal deformability (see e.g. Chan et al. 2014). Sotani & Kumar
(2021) have investigated various universal relations between several
oscillation modes and the tidal deformability. Inspired by works on
the universal relations for single NSs (Andersson & Kokkotas 1998;
Benhar et al. 2004; Doneva et al. 2013; Yagi & Yunes 2013a,b),
recent studies have investigated various universal relations between
the binary tidal deformability and the f-mode frequency of the post-
merger remnant of a binary NS system using numerical relativity
simulations (Bernuzzi, Dietrich & Nagar 2015b; Rezzolla & Takami
2016; Kiuchi et al. 2020). It is worth noting that Kriiger & Kokkotas
(2020b) and Manoharan, Kriiger & Kokkotas (2021) calculated the
f-mode frequency for fast-rotating NSs without using the Cowling
approximation, and discovered a relation between the pre-merger
tidal deformability and the dominant oscillation frequency (i.e. f-
mode) of the post-merger remnant of a binary NS system. Meanwhile,
using the universal relation of f mode (Kriiger & Kokkotas 2020b;
Manoharan et al. 2021), Volkel, Kriiger & Kokkotas (2021) and
Volkel & Kriiger (2022) studied the Bayesian inverse problem of
rotating NSs. In this work, we will study the universal relation
between the f-mode frequency and the tidal deformability of SSs,
which will be a useful input for comparisons among NSs, QSs, and
SSs.

The paper is organized as follows. In Section 2, we introduce the
EOS of SSs and obtain the structure of non-rotating SSs. Based on
the background solutions, in Section 3, we integrate the equations of
relativistic radial oscillations to determine the f-mode frequency for
different EOSs of SSs. In Section 4, we calculate the frequency
of non-radial f mode and the tidal deformability of SSs. New fits of
universal relation between them are discussed. Finally, we summarize
our work in Section 5.

Throughout the paper, we adopt geometric units with ¢ = G =
1, where ¢ and G denote the speed of light and the gravitational
constant, respectively. The metric signature is (—, +, +, +).

2 EQUATION OF STATE AND STRUCTURE OF
SPHERICAL STATIC STARS

We assume that the interaction potential between two strangeons is
described by the Lennard—Jones potential (Jones 1924; Lai & Xu
2009; Gao et al. 2022),

= [(6)" - (2)]

where € is the depth of the potential, r is the distance between
two strangeons, and o is the distance when u(r) = 0. We note that
this potential has the property of short-distance repulsion and long-
distance attraction.

According to the results of early studies (Xu 2003; Lai & Xu 2009;
Gao et al. 2022), the potential energy density is given by

pp = 2¢€ (Ao *n’ — Ago®n?), )
where Aj, = 6.2, Ag = 8.4, and n is the number density of strangeons.

The total energy density of zero-temperature dense matter composed
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Figure 1. Relations between mass—energy density p and pressure P for NSs,
QSs, and SSs.

of strangeons reads
p =2¢ (Alzalan — A606n3) +nNgmg, 3)

where Nym, is the mass of a strangeon with N, being the number
of quarks in a strangeon and mg being the quark mass. In the above
equation, the contributions from degenerate electrons and vibrations
of the lattice are neglected. From the first law of thermodynamics,
one derives the pressure

P =n? d(p/n)
- dn

=4e (24100’ — Ago®n?). 4)

At the surface of SSs, the pressure becomes zero and we obtain
the surface number density of strangeons as [Ag/(24,,0°%)]"2. For
convenience, we transform it to the number density of baryons

As \'* N,
= —, 5
" <2A]2> 30’3 ( )

For a given number of quarks N, in a strangeon, the EOS of SSs is
completely determined by the depth of the potential € and the number
density of baryons ng at the surface of the star. An 18-quark cluster,
called quark-alpha (Michel 1991), can be completely symmetric in
spin, flavour, and colour spaces. Therefore, we set Ny = 18 in our
calculation as a reasonable example.

Besides the EOS of SSs, we also consider six EOSs of NSs and
QSs for comparison, including four popular nuclear matter EOSs
for NSs, AP4 (Akmal & Pandharipande 1997), SLy4 (Douchin &
Haensel 2001), MS0, and MS2 (Mueller & Serot 1996), as well
as two QS models, the MIT bag model with a bag constant B =
60 MeV fm~3 (Alcock et al. 1986) and SQM3 (Lattimer & Prakash
2001).! The corresponding density—pressure relations for these EOSs
are depicted in Fig. 1. We denote the EOSs of SSs using their values
of ny and €. For example, ‘LX2430’ means a surface baryon number
density ny = 0.24fm~3 and a potential depth € = 30 MeV.

We consider the unperturbed relativistic star to be described
by a perfect fluid. The energy—momentum tensor is 7, = (p +
Pu,u, + P g,,. The static and spherically symmetric metric,

I'Note that the nucleonic EOSs, MS0, and MS2 have similar properties as SSs
of higher maximum masses.
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Figure 2. Mass—radius relations of SSs with different combinations of the
surface baryonic density ng and the potential depth €. For comparison, we also
show the mass—radius relations for selected NSs and QSs. The 1o regions of
the mass measurements in PSRs J0348+0432 (Antoniadis et al. 2013) and
JO740+ 6620 (Fonseca et al. 2021) are illustrated.

which describes an equilibrium relativistic star, is given by the line
element,

ds? = —e*®dr? + e*2dr? + r2(d9? + sin® 6dg?), (6)

where @ and A are metric functions of r. A mass function m(r) is
defined as m(r) = r(1 — e~2*)/2, which satisfies

d

= dnrp, @)
dr

where p is the energy density. The Tolman—Oppenheimer—Volkoff
equations that determine the pressure P(r) and the metric function
®(r) are expressed as

dP (o + P)dCD ®)
dr P dr’

d® m+4nr’P
—_— = )
dr r(r —2m)

Integrating equations (7), (8), and (9) combined with the EOS, one
obtains the stellar structure of spherical stars and the space—time
geometry. In Fig. 2, we show the mass—radius relations for NSs,
QSs, and SSs using the aforementioned EOSs. The EOSs of SSs
are very stiff because the strangeons are non-relativistic and there
is a very strong repulsion at a short intercluster distance (Gao et al.
2022), which leads to the maximal masses over 3 M. In contrast,
the quarks are relativistic and nearly free for QSs, so the EOSs
are soft and the maximal masses only reach 2 M marginally. The
observations of the massive pulsars, PSRs J0348+4-0432 (Antoniadis
et al. 2013) and J0740+4-6620 (Fonseca et al. 2021), at ~ 2 M, via
pulsar timing support the stiff properties of the EOS. More massive
ones (e.g. > 2.5 Mg) are expected in our model for future discovery.
The GWs from the binary NS inspiral, GW170817, gave constraints
on the tidal deformability for the first time (Abbott et al. 2017, 2018,
2019a), which rules out several stiff EOSs (e.g. EOSs MSO and
MS2) and models of SSs with very low surface baryonic densities
(say, LX2430 and LX2450) at a 90 per cent credible level (see fig. 18
in Gao et al. 2022).
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3 RADIAL OSCILLATIONS

In this section, we study radial oscillations of SSs. We denote the
radial displacement of a fluid element as §r(r, f) and its harmonic
oscillation mode with circular frequency w as 87(r, 1) = X(r)e'". To
obtain the discrete set of oscillation frequencies of SSs, we adopt the
perturbation equations in Kokkotas & Ruoff (2001). In practice, we
define a new variable { = r?¢~®X. The master equation for radial
oscillations is expressed as

d d¢ ) B
E(Pd—r)jL(QﬁLw W)¢ =0, (10)
where

PP = TP,
Q)/
r’Q = "o + P) [(@’)2 +4— —8re P,
r
PPW = (p + P)e . (1n

By setting n = P¢’, one obtains the following coupled differential
equations,

¢ 7

PRt (12)
dn

3= —(0®W 4+ Q)s. (13)

At the centre of the star, the boundary condition is 3¢y = 10/Po,
where ¢ and ng are the values of ¢ and n at » = 0, respectively
(Kokkotas & Ruoff 2001). By setting no = 1, we have ¢y = 1/3P,
where Py = ' P(0)e®O+3®O) At the star surface r = R, the
pressure perturbation must vanish, namely AP = 0, which provides
another boundary condition, 'P¢’ = 0. Equations (12) and (13)
with the above two boundary conditions form a two-point bound-
ary value problem of the Sturm-Liouville type with eigenvalues
0} <} < @3 < -+ (Shapiro & Teukolsky 1983), where w, is the
eigenfrequency of the f mode. If w3 > 0, all the eigenfrequencies of
the oscillation modes are real, which indicates that the equilibrium
stellar model is dynamically stable (Chandrasekhar 1964a,b; Misner
etal. 1973). The period of the f mode is given by 7o = 1/vy = 27 /wy,
where vy is the ordinary or temporal frequency. Inversely, w? < 0
corresponds to an exponentially growing unstable radial oscillation.

For adiabatic oscillations, the adiabatic index governing the
perturbations is defined by (Kokkotas & Ruoff 2001)

r,_,0+PdP
TP dp’

which is equal to the adiabatic index governing the equilibrium
pressure—energy density relation. The relation between the adiabatic
index I' and the mass—energy density p is shown in Fig. 3. We note
that the adiabatic indices for QSs and SSs are qualitatively different
from that of NSs at low density. Moreover, SSs generally have a
larger adiabatic index than NSs and QSs, indicating that the EOSs of
SSs are stiffer (Gao et al. 2022).

In Fig. 4, we present the f-mode frequency vy and the frequencies
of the first two excited modes, v; and v,, for SLy4, AP4, and the MIT
bag model. Our results for NSs reproduce the results of Kokkotas &
Ruoff (2001). We observe that f mode becomes unstable (i.e. a)g
becoming negative) for central densities above 2.83 x 10", 2.70 x
103, and 2.05 x 10'3gcm ™3 for three EOSs. The instability point
corresponds to maximal masses 2.04, 2.21, and 1.96 My, for SLy4,
AP4, and the MIT bag model, respectively. It is worth noting that
the f-mode frequency of the MIT bag model behaves very different
from that of NSs at low central density, rooting in the self-bound and
gravity-bound nature of QSs and NSs, respectively.

(14)
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Figure 3. Relation between the adiabatic index I' and the mass—energy
density p for NSs, QSs, and SSs.
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Figure 4. The frequencies of the fundamental mode, vy, and the first two
excited modes, v; and v, of radial oscillation, as functions of the central
density p. for NSs and QSs.

To further explore the results for QSs, SSs, and NSs, we note
that with a low central density, the star can be approximated as a
homogeneous non-relativistic star (Shapiro & Teukolsky 1983), so
that the angular frequency wg of the f mode reads a)(z) =4mp(4l —
3)/3. Using the relations between the density and the adiabatic index
shown in Fig. 3, we do expect the frequency wy to diverge as the
density approaches a minimal value for QSs and SSs. For NSs, the
adiabatic index does not change significantly as the density decreases.
Therefore for NSs, wy tends to zero mildly when the central density
of the star is sufficiently low. Indeed, these points are confirmed in
Fig. 4.

In Fig. 5, we show the ordinary frequency v, of the f mode versus
the mass of the stars for SSs and one EOS of QSs. The curves of SSs
have the same trend as that of QSs, with vy going to zero at their
maximal masses. However, v, for SSs is larger than that of QSs for
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a given mass, which arises from the fact that SSs> EOSs are much
stiffer than that of QSs.

4 NON-RADIAL OSCILLATIONS

In this section, we study non-radial oscillations of a non-rotating
SS in the Cowling approximation, in which the space—time metric
is kept to be the static spherical background solution in the so-
called Cowling approximation (Cowling 1941). The fluid Lagrangian
displacement vector is given by

g = (e MW, =V, —Vsin200,) r Yy, (15)

where W and V are functions of ¢ and r, while Yy, is the spherical
harmonic function. Then the perturbation of the four-velocity, du”,
can be written as

Sul = (0,e 29 W, —8,Vdy, —3,Vsin203,) r e ¥y (16)

Assuming a harmonic dependence on time, the perturbative
variables can be written as W(z, r) = W(r)e'® and V(t, r) = V(r)e".
We can obtain the following system of equations for the fluid
perturbations (see Sotani et al. 2011; Doneva & Yazadjiev 2012;
Yazadjiev & Doneva 2012, for a detailed variational derivation),

dw do [ 5 5 Az do A

—_—= V+—W|—4l+1 Vv, 17
i ap |97 + O £+ e a7
dv do w

——=2—V et (18)
dr dr r2

The boundary condition at the centre of the star can be
parametrized as, W= A" and V= —A///l, with A being an arbitrary
constant. It can be obtained by examining the behaviour of W and
V in the vicinity of r = 0. At the surface of the star, the perturbed
pressure must vanish, which provides
w22V (R) 4+ 1d® W(R) = 0. (19)

R? dr lr=r

In full general relativity, each QNM is characterized by a complex
eigenfrequency w = w; +iw; (Thorne & Campolattaro 1967). The
real part w, corresponds to the mode frequency, and the imaginary
part w; gives the damping time v = l/w; due to GW emission.
However, in the Cowling approximation, we obtain normal modes
of oscillation and there is no emission of GWs. For a non-rotating
stellar model, the Cowling approximation leads to a relative error
~ 10-30 per cent for the f mode (Chirenti, de Souza & Kastaun
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2015; Sotani & Dohi 2022). For higher modes, the relative error is
smaller (Yoshida & Kojima 1997).

4.1 F-mode frequency

Now we calculate the ordinary frequency vy of the f mode for the / =
2 non-radial oscillation, and study its relation with the mass M, the
compactness C = M/R, and the dimensionless tidal deformability A
for NSs, QSs, and SSs.

The frequency v, versus mass M for NSs and QSs is shown in
the top panel of Fig. 6. By increasing the mass of the star, the
frequency v, increases significantly for NSs, while it does not
change much for QSs. This can be understood by noticing that
QSs are self-bound by strong interaction and the density in the
interior of the star does not change too much as the mass increases.
This is in contrast to NSs that are gravitationally bound. From the
figure, we can see that the values of vy at the maximal masses of
NSs and QSs are 2.907, 2.823, 2.562, and 2.597 kHz for SLy4,
AP4, SQM3, and the MIT bag model with B = 60 MeV fm 3,
respectively.

Additionally, the frequency v, versus mass M for SSs is shown
in the bottom panel of Fig. 6. We find that the curves of SSs are
similar to those of QSs only that the frequency v, for SSs extends a
much wider range. The values of v, at the maximal masses of SSs
are 6.676, 6.832, 7.977, and 8.684 kHz for the EOSs of SSs with
different values of ng and € that we use in the figure. Compared
with QSs and NSs, these values are much larger, and it could be an
indicator to distinguish EOSs via GW observations.

We show in Fig. 7 the relation between the frequency vy and the
compactness of the stars. It might be useful to note that the values
of the maximal compactness, Cpax, are 0.21, 0.23, 0.19, and 0.19 for
SLy4, AP4, SQM3, and the MIT bag model with B = 60 MeV fm =3,
respectively. In contrast, the value of Cy,,x for SSs with different
values of ng and € is about the same, Cy,,x =~ 0.27. This maximal
value of the compactness represents the limit of how stiff EOSs of
SSs can be due to the repulsive hardcore and the non-relativistic
nature of strangeons.
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4.2 Universal relations

To reveal the internal characters of NSs and assist relevant data
analysis, universal relations between the f-mode, p-mode, and w-
mode frequencies and the mass or the radius of NSs have been
investigated (Andersson & Kokkotas 1996, 1998; Benhar, Berti &
Ferrari 1999; Benhar et al. 2004; Tsui & Leung 2005). Motivated
by possible observations of the moment of inertia / of NSs, Lau,
Leung & Lin (2010) used the moment of inertia to replace the
compactness and discovered EOS-independent relations in QNMs
of NSs and QSs. Similar results were shown in Chirenti et al. (2015).
These relations can be used to infer the stellar parameters — mass,
radius, and possibly the EOS — from QNM data with future GW
detectors.

Using the Cowling approximation, Sotani et al. (2011) calculated
non-radial oscillations of NSs with hadron—quark mixed phase
transition, and discovered an approximate formula. Inspired by
the universal relation between the f mode and the compactness
C (Sotani et al. 2011), we show the scaled frequency of the f mode
versus the compactness C for NSs, QSs, and SSs in Fig. 8. In
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Figure 9. The frequency of the f mode as a function of the dimensionless
tidal deformability A for NSs, QSs, and SSs.

particular, as shown by the solid lines in the figure, the universal
relation for NSs can be represented by the following empirical
formula:
M M2 M3

vo=ath(G) +a(Z) +a(%)- 0

Vo a1+1R+CIR+1R (20)
with a1 = —0.012, by = 19.48, ¢; = 71.3, and d; = —125, while for
SSs, we found a new universal relation,

= an o0 () () ()
Vv =a — ol — —
0 n+ b 5 i\ % i\ %

M4 M5
+€II(§) +k11(§) ) (2
with ang = —2795, bH = 1.941 x 102, i = —3.834 x 103, d[] =
3.789 x 10% ey = —1.601 x 10°, and ky = 2.531 x 10°. We
can observe that the behaviour of the f-mode frequencies for the
SSs is very different from the NSs and QSs, especially when the
compactness is larger than ~0.15, where the f-mode frequency from
SSs is much larger than that of QSs and NSs. It can be an important
‘smoking gun’ signal for SSs.

For tidally deformed relativistic stars, the quadrupole tidal de-
formability gives important information about the stellar structure.
To characterize the deformation of the star, one usually defines the
tidal deformability via Q;; = —A&;;, where &;; is the external tidal
field and Qj; is the induced traceless quadrupole moment tensor
of stars (Hinderer 2008; Hinderer et al. 2010). The parameter X is
related to the [ = 2 Love number k, via k, = 3AR>/2. Besides,
the dimensionless tidal deformability A, defined as A = 2k, Cc3/3,
is also commonly used. We note that the tidal deformability is
proportional to the fifth power of the radius R. Therefore, constraining
or measuring tidal deformability can provide important information
on the EOS (Abbott et al. 2018, 2019a), as well as test gravity
theories (Hu et al. 2021; Xu, Gao & Shao 2022). The influence
of tidal on the phase of GW in the inspiral stage is predominantly
dependent on the Love number k,, and the effect enters at the fifth
post-Newtonian (PN) order (Flanagan & Hinderer 2008).

In Fig. 9, we display the relation between the frequency of the f
mode and the dimensionless tidal deformability, A, for NSs, QSs, and
SSs. It is seen that the frequency decreases with A. It is understood
that the more compact the star becomes the harder it can be deformed.
For SSs, as the potential depth € increases and the surface baryonic
density ng decreases, the EOS becomes stiffer, which leads to larger
tidal deformability and f-mode frequency.

MNRAS 516, 6172-6179 (2022)

220Z 1890100 | U0 Jasn Jajuan) aousiog YieaH Ausiaaiun buiyed Aq €£¥5029/2/19/v/9 1 S/e|onie/Seiuw/woo dno-oiwspese//:sdny wolj papeojumoq


art/stac2622_f7.eps
art/stac2622_f8.eps
art/stac2622_f9.eps

6178 H.-B. Li et al.
0.030 —— NSsand QSs  * B=60MeVim? |
— S5 A LX2430
0.025 % SLy4 % LX2450
¢ AP4 LX3230
+  SQM3 e LX3250

£ 0.020
=

0.015¢

0.010¢

0.005===556~ 50077501000 1250 1500 1750 2000

Figure 10. Scaled frequency of the f-mode Mv( as a function of the tidal
quadrupolar (I = 2) coupling constant « for NSs, QSs, and SSs. The solid
line represents the best power-law fit in «} to the scaled frequencies of the
NSs, QSs, and SSs.

For binary NSs of masses M, and M), the dimensionless tidal
coupling constant is defined as (Bernuzzi et al. 2014, 2015a,b)

XN\ . 1 X\,
(&) e (@) e
where ¢ = M,/M, < 1, X, = M,/(M, + M,), and C; and ké (i =
a, b) are the compactness and the quadrupole Love number of each
star. If we consider a binary system with non-rotating equal-mass
configuration, the dimensionless tidal coupling constant is given by
s =ky/8C> = 3A/16.

Inspired by the universal relation between the dimensionless
tidal coupling constant and the f-mode frequency (Chakravarti &
Andersson 2020), the relation between Mv, and «3 for NSs, QSs,
and SSs are shown in Fig. 10. For NSs and QSs, we find the
scaled frequency of the f mode approximately satisfies the following
relation,

My = 0.184(x)) ™0 — 0.154. (23)

r_
ky =72

For SSs, the universal relation is
My = 0.071 (k) =2, (24)

The universal relations for QSs and SSs will complement that of
NSs, and play a role in GW data analysis (Dietrich, Bernuzzi &
Tichy 2017).

5 CONCLUSIONS

In this paper, we use the Lennard—Jones model to describe the EOS
of SSs with two parameters, the number density at the surface of the
star ng and the potential depth €. Compared to the MIT bag model of
QSs, the EOS of SSs is much stiff due to the non-relativistic nature
of the particles and the compressed repulsive hardcore at a small
intercluster distance. Following earlier work (Lai & Xu 2009; Gao
et al. 2022), we calculate the mass and radius relation for SSs for
different values of ng and €, and find that the maximal mass of SSs is
higher than that of NSs and QSs. This serves as background solutions
for perturbation studies of various oscillation modes.

To study radial oscillations of SSs, for the first time we calculate
the frequency of the radial modes for SSs with different combinations
of ng and €. The results are compared with that of NSs and QSs. We
discover that radial oscillations of SSs are similar to those of QSs

MNRAS 516, 6172-6179 (2022)

but behave very differently from those of NSs, especially for stars
with low central energy densities or small masses. For QSs and
SSs, the frequencies of radial oscillations tend to infinity when the
central energy density approaches the minimal value pp;,, which
corresponds to the pressure being zero. This can be understood by
approximating the stars in the non-relativistic regime and noticing
that the adiabatic index I" for SSs and QSs goes to infinity as the
density decreases to its minimal value.

For non-radial oscillations of SSs, we calculate the frequency of
the f mode for / = 2 component using the Cowling approximation,
and obtain the universal relations between the f-mode frequency and
other global parameters of the spherical SSs. As recently proposed
in Gao et al. (2022), where the I-Love—Q universal relations for SSs
were studied, the universal relation of the f-mode frequency for SSs
is also ready to be used for various purposes in GW astrophysics
involving compact stars. With application to data in the future,
possible constraints can be set on the parameter space of the Lennard—
Jones model, namely the ns—e plane, using GW observations of the
QNMs from compact stars.

There can be several interesting extensions of our work. First,
our study of non-radial oscillations uses the Cowling approxima-
tion (Cowling 1941), which considers only the fluid perturbation.
In principle, one should also allow the space-time metric to be
perturbed, and thus one can obtain QNMs instead of normal modes.
Next, we would like to further investigate how dynamical tides
affect the frequency of the f mode in compact binary systems. NSs
have certain spins and the rotation rate may reach extreme values,
especially for nascent or remnant objects following a binary merger.
From the perspective of detecting oscillation modes with GWs, the
most relevant scenarios are likely to involve rapidly rotating NSs. An
important step in this direction has been carried out using perturbation
theory in general relativity with the Cowling approximation (Kriiger,
Gaertig & Kokkotas 2010; Gaertig & Kokkotas 2011; Doneva
et al. 2013). In the next step, we can study the oscillation modes
of rapidly rotating SSs in the Cowling approximation based on
existing work. Recently, Kriiger & Kokkotas (2020a,b), managed
to calculate the oscillations and instabilities of relativistic stars
using perturbation theory without the Cowling approximation. The
oscillation spectrum, universal relations involving f mode, and the
critical values for the onset of the secular Chandrasekhar—Friedman—
Schutz instability are studied in great detail. Further, Manoharan et al.
(2021) investigated universal relations for binary NS mergers with
long-lived remnants. By considering the oscillations of the rapidly
rotating merger remnant, they proposed an approach to relate the pre-
merger tidal deformability to the effective compactness of the post-
merger remnant. Those studies are important to probe the EOS of
NSs with GW asteroseismology. Therefore, to study the oscillations
of rapidly rotating SSs without the Cowling approximation is an
important goal worth pursuing.
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