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The state equation for strangeon matter is very stiff due to the non-relativistic nature of its particles and their repulsive interaction,
such that pulsar masses as high as ∼ 3M⊙ would be expected. However, an adiabatic sound speed, cs =

√
∂P/∂ρ, is usually

superluminal in strangeon matter, and the dynamic response of a strangeon star (e.g., binary merger) is not tractable in numerical
simulations. In this study, we examined signal propagation in strangeon matter and calculate the actual propagation speed, csignal.
We found that the causality condition , csignal < c, is satisfied and the signal speed is presented as a function of stellar radius.
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1 Introduction

Understanding the nature of pulsars depends on an un-
derstanding of the state of supranuclear matter, which is
related to the non-perturbative behavior of fundamental
strong interactions. Even though more than half a century
passed after its discovery, this topic remains poorly under-
stood. In the era of gravitational wave astronomy, how-
ever, this state may soon be understood, especially after
the GW170817 event caused by the merger of binary com-
pact stars [1]. This type of event can certainly help to dis-
tinguish the equation of state (EoS) models of a compact
star (see ref. [2] for a review). In fact, the post-merger
gravitational wave signal and its electromagnetic counter-
parts are closely related to the shocks and ejected material
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accompanying the merger of binary compact stars, whereas
the dynamical response depends on the sound speed in com-
pact star matter [3]. Of course, sound speed depends on the
EoS of compact star matter. As such, it is essential to prop-
erly calculate the sound speed in order to study the mergers
of binary compact stars with numerical relativity.

Although there is not yet a good understanding of quantum
chromodynamics at low energy scales, there have been many
speculations about the EoS of cold supranuclear-density mat-
ter and about so-called strange matter. This idea says that 3-
flavored strange matter (composed of free u, d and s quarks)
could be even more stable than 2-flavored nucleon mat-
ter [4,5]. Based on this, various models for 3-flavored strange
stars are being considered. The widely used Massachusetts
Institute of Technology bag model (MIT) bag model, which
treats quarks as free and relativistic, was often adopted to de-
scribe the matter state of pulsars [6, 7]. In this case, the max-
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imum mass of a pulsar can barely reach 2 M⊙. Then, the ob-
servation of the 1.97 M⊙ pulsar J0715+1807 [8] and 2.01 M⊙
pulsar J0348+0432 [9] marginally ruled out this quark star
model. In fact, even in the neutron star model, 2 M⊙ is still
too large to consider due to the “hyperon puzzle” [10, 11].
Another strange matter model in which the quarks are bound
in clusters (formerly known as strange quark-clusters [12],
which are like nucleons but with strange quarks, hereafter,
strangeons [13]) allows the maximum mass of a pulsar to be
much larger [14]. Therefore, the strangeon star model is more
favorable than others in comprehending the mass of pulsars.
In addition, the strangeon star model can also solve some
problems that are difficult to address in other models, e.g.,
bi-drifting of sub-pulses [15], the non-atomic feature in the
spectrum of X-ray dim isolated neutron stars (XDINSs) [16],
two types of glitches in normal pulsars and AXP/SGRs [17],
and the optical/UV excess of XDINSs [18].

However, the strangeon star model is sometimes rejected
because its matter state is too stiff. Based on the conven-
tional formula, the sound speed cs =

√
∂P/∂ρ in such stiff

matter would exceed even the speed of light [19-22], so the
maximum mass of a compact star would never be larger than
3.2 M⊙ [23]. Obviously, the maximum mass of a strangeon
star conflicts with the above result [14,24,25]. In fact, Capo-
raso and Brecher [26] pointed out that it is possible to con-
struct a lattice model with ∂p/∂ρ > c2 and a subluminal sig-
nal speed. However, their work assumed electromagnetic in-
teraction and did not include the expression of signal speed.
Here, we put forward a signal speed for a more general case,
which can at least be correctly adopted in strangeon matter
and is absolutely necessary for simulating a strangeon star
merger [27] with numerical relativity.

A strangeon is much more massive than a nucleon. There-
fore, in matter with similar mass density, the quantum wave
packet of a particle in strangeon matter is smaller than that
in nucleon matter. Thus, the strangeon could be regarded
as a classical localized particle rather than a quantum wave
packet. In this paper, for the sake of simplicity, we consider
oscillation propagation in a 1-D discrete chain. In sect. 2, we
theoretically derive the sound speed in a 1-D chain of parti-
cles and we discuss this speed in sect. 3. We summarize our
results in sect. 4.

2 A model to calculate signal speed

Consider a 1-D chain of particles, in which the particles along
the chain can vibrate slightly. The position of the n-th particle
can be expressed as a function of time t, as follows:

xn = f (n, t) + l(n), (1)

where l(n) is the average position of the n-th particle and
f (n, t) is its relative displacement, which has a zero mean.
Assume a two-body short-range (which means the interaction
affects only nearby particles) repulsive conservative interac-
tion F(x), which is related only to the distance between two
particles x. Then, the force on the n-th particle by the subse-
quent or previous particle can be expressed as follows:

Fn+ = F(
∣∣∣xn+1, ret − xn

∣∣∣), Fn− = F(|xn−1, ret − xn|), (2)

where the subscript “ret” indicates that this is a retarding
force because of the propagation of the force field. In this pa-
per, we assume that the propagation speed of the force field
is the speed of light c. With the assumption of small ampli-
tude, f (n, t), f (n − 1, t) ≪ l(n) − l(n − 1), we can expand
the force to the first order of the distance between particles at
their average position.

Fn+ = F
(

f
(
n + 1, t − l(n + 1) − l(n)

c

)
− f (n, t)

+ [l(n + 1) − l(n)]
)

≈ F(l(n + 1) − l(n)) +
[

f
(
n + 1, t − l(n + 1) − l(n)

c

)
− f (n, t)

]
∂F
∂x

∣∣∣∣∣
x=l(n+1)−l(n)

, (3)

Fn− = F
(

f (n, t) − f
(
n − 1, t − l(n) − l(n − 1)

c

)
+ [l(n) − l(n − 1)]

)
≈ F(l(n) − l(n − 1)) +

[
f (n, t)

− f
(
n − 1, t − l(n) − l(n − 1)

c

) ]
∂F
∂x

∣∣∣∣∣
x=l(n)−l(n−1)

. (4)

On the other hand, the resultant force on the n-th particle can
be expressed as follows:

Fn =
d2 f
dt2 = Fn− − Fn+

≈ F(l(n) − l(n − 1)) − F(l(n + 1) − l(n))

+

[
f (n, t) − f

(
n − 1, t − l(n) − l(n − 1)

c

)]
∂F
∂x

∣∣∣∣∣
x=l(n)−l(n−1)

−
[

f
(
n + 1, t − l(n + 1) − l(n)

c

)
− f (n, t)

]
∂F
∂x

∣∣∣∣∣
x=l(n+1)−l(n)

,

(5)

where m is the mass of each particle. Taking the average of
eq. (5), we can obtain F(l(n)− l(n−1))−F(l(n+1)− l(n)) = 0.
The repulsive interaction is generally monotonous with dis-
tance x (over a small range), which means that l(n)−l(n−1) =
l(n + 1) − l(n), i.e., the interparticle spacing is regular. This
constant is represented as l below.
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To calculate the sound speed, first, we consider the wave
propagation process in the frequency domain, as in the tradi-
tional method.

2.1 Frequency-domain oscillation propagation in an in-
finite chain

In the frequency domain, eq. (5) can be expressed as
follows:

g(n + 1, ω) + g(n − 1, ω)
g(n, ω)

= 2

1 − mω2

2 ∂F
∂x

∣∣∣
x=l

 exp
(
i
lω
c

)
, (6)

where g(n, ω) is the complex amplitude of the n-th particle at
frequency ω, and ∂F

∂x

∣∣∣
x=l ≈ −3(1 − 2ν) m

l2

(
∂P
∂ρ

)
T

, P and ρ are
the internal pressure and density of the chain, respectively, ν
is the Poisson’s ratio, and the subscript T indicates that the
derivative is taken isothermally. Considering that the Pois-
son’s ratio for a perfectly isotropic elastic material is 0.25
and the adiabatic index of the 1-D matter discussed here is
3 (degree of freedom is 1), the ∂F

∂x

∣∣∣
x=l can be expressed as

− m
2l2

(
∂P
∂ρ

)
S

, where the subscript S indicates that the derivative
is taken isentropically. The stable solution for eq. (6) is as
follows (in which the divergent branch is abandoned):

g(n + 1, ω)
g(n, ω)

= b −
√

b2 − 1, (7)

where b =
[
1 − l2ω2(

∂P
∂ρ

)
S

]
exp

(
i lω

c

)
. With the phase variation

shown in the above equation, we can calculate the apparent
phase and group velocities of the oscillation as follows:

cp =
lω

− arg
[

g(n+1,ω)
g(n,ω)

] , (8)

cg =
c2

p

cp − ω dcp.

dω

. (9)

As shown in eq. (7), the amplitude of the oscillation damp-
ens while propagating, which implies that there is reflection
wave in the chain. In this case, neither the phase velocity nor
group velocity represents the velocity of the signal propaga-
tion. Hence, we must calculate the signal propagation in the
time domain.

2.2 Time-domain impulse response in finite chain

Here, we consider the transfer function of the system in which
a signal propagates in a 1-D chain with k particles. eq. (5)
shows that the acceleration of each particle (i.e., the second
time derivative of the particle’s displacement) is affected by
its own position and that of nearby particles, and that the
whole system is linearly time-invariant. Figure 1 shows a

block diagram of this system, in which each node repre-
sents the displacement of each particle xn, D is the delay
element with the transfer function D(s) = exp

(
− ls

c

)
, G0 is

the proportional derivative element with the transfer equation
G0(s) = − 1

ms2
∂F
∂x

∣∣∣
x=l, and s is the complex variable (or com-

plex frequency) corresponding to the Laplace transform of
f (t)

Tn(s) = L [ f (t)] =
∫ ∞

0
f (n, t) exp(−st)dt. (10)

In Figure 1, each feedback branch with a multiplicative gain
of “–2” represents the effect of the particle position on its own
acceleration, and the multiplicative gain of “+” is the effect of
the posterior particle. A feedback of “–2” of the last particle
indicates that the last particle is limited by the rigid boundary.
Since the element composed of a delay element and a feed-
back loop repeats n times in the block diagram, the diagram
can be simplified as shown in Figure 2, where

G1(s) =
G0D

1 + 2G0
. (11)

Using Mason’s gain formula, the total transfer function of
the system can be obtained as follows:

G(s) =
Gk

1

⌊ k
2 ⌋∑

m=0
Cm

k−m(−G2
1)m

=
2kGk

1

k + 1 + O[1 − 4G2
1]
. (12)

With the low frequency assumption lω ≪ min
(
c,

√(
∂P
∂ρ

)
S

)
,

we can approximate the transfer function at a short-range
(1 ≪ k ≪

(
∂P
∂ρ

)
S

1
l2ω2 ) as follows:

G(s) =
2kGk

1

k + 1
=

1
k + 1


(
∂P
∂ρ

)
S

l2s2 +
(
∂P
∂ρ

)
S


k

exp
(
−kls

c

)
. (13)

Thus, for an impulse signal x0(t) = Aδ(t), the response
should be

xk(t) = L −1[L [x0(t)]G(s)]

=
2k− 1

2
√
πA

(k + 1)Γ(k)

√
1
l2

(
∂P
∂ρ

)
S
θk−

1
2 Jk− 1

2
(θ), (14)

where θ =
√

1
l2

(
∂P
∂ρ

)
S

(
t − kl

c

)
, Γ is the Gamma function and J

is the Bessel function of the first kind. The position of the first
maximum point of eq. (14) provides the propagation time of
the signal (here, we regard the peak time as the propagation
time). Considering the relation [28]

d[θνJν(θ)]
dθ

= θνJν−1(θ), (15)

and the asymptotic about the first zeros of the Bessel function
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Figure 1 Block diagram of signal propagation. Each node represents the displacement of each particle in the chain, with D as the delay element and G0 as
the proportional derivative element.
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Figure 2 Simplified block diagram of signal propagation. G1 is the proportional derivative element.

jν1 [29]

jν1 = ν + 1.855757ν1/3 + 1.003315ν−1/3 + O[ν−1], (16)

we can obtain the signal propagation time, as follows:

tsignal =
k − 3

2 + 1.855757
(
k − 3

2

)1/3
+ O[1]√

1
l2

(
∂P
∂ρ

)
S

+
kl
c
. (17)

Finally, the signal propagation speed should take the fol-
lowing form (for k ≫ 1):

csignal =
kl

tsignal
≈ 1

1√(
∂P
∂ρ

)
S

+ 1
c

< c. (18)

If we ignore the propagation delay of the force field, i.e.,

csignal ≈
√(
∂P
∂ρ

)
S

, the result is actually the conventional sound
speed. eq. (18) also implies that the signal propagation can
never be faster than light, as shown in Figure 3.

We should also note that the speed we use here is the av-
erage speed, which is just derived from the output signal (the
displacement of the last particle). In fact, here, we do not
derive the movement of the particles other than those at both
ends of the chain.

2.3 Signal propagations inside star

Based on the derivation in sect. 2.2, the signal propagation
speed csignal in strangeon matter is always slower than the
speed of light. With a definite EoS, we can obtain the csignal

value in a strangeon star as well. Here, we adopt the EoS
supplied by Lai and Xu [14], and Figure 4 shows the corre-
sponding csignal in a strangeon star. It could be shown that

    

Figure 3 Relation between signal speed csignal and
√(
∂P
∂ρ

)
S
.
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Figure 4 (Color online) Density ρ and signal speed csignal in strangeon
stars, where ρ0 is the nuclear matter density. We calculate the density of a
strangeon star using the EoS supplied by ref. [14].
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the csignal in a strangeon star is quite close to c, and csignal

decreases from the stellar center to the surface with the den-
sity. Therefore, it would be a good approximation to assume
a kinematic perturbation in the strangeon matter responses at
the speed of light, c, because the real one deviates by only
∼ 10−8c.

3 Discussion

3.1 Assumptions in the derivation

We made a few assumptions in this derivation and discuss the
applicability of these assumptions below.

3.1.1 Small amplitude assumption

The assumption of small amplitude is made throughout the
derivation process. In fact, in traditional derivations of sound
speed, small amplitude assumption is also adopted to ensure
the linearity of the system, but here it is much stricter. Small
amplitude here means that the amplitude is much smaller than
the interparticle spacing, which is violated in most cases. Ac-
tually, this assumption can be replaced by a stable spacing
assumption, f (n + 1, t) − f (n, t) ≪ [l(n + 1) − l(n)], i.e., the
distance between nearby particles is almost invariant. This
assumption is equivalent to the traditional small amplitude
assumption (although it still does not apply to normal gas).

In the derivation, we assume the oscillation to be longitu-
dinal. Nevertheless, the small amplitude assumption makes
the derivation results also applicable to transverse waves. For
a transverse wave, the repulsive force is replaced by an attrac-
tive force (the relation between this force and the tension in
the chain also differs), and the position of each particle along
the chain must be manually arranged in advance.

In a triaxial crystal, the potential in each lattice is also
triaxial. With the small amplitude assumption, the poten-
tial near each particle can be approximated as the triaxial
harmonic oscillator potential. While oscillation propagates
along the axis of this potential (assuming a short range, this
constraint ensures the degree of freedom to be 1), the deriva-
tions in sect. 2 are still available. The speed of a plane
sound wave along different axes also differs, depending on
the potential and the lattice constant. However, the oscilla-
tion whose propagation direction avoids the potential axis is
so complex that we do not consider it in this paper.

3.1.2 Low frequency assumption

In the derivation, we assume the frequency to be low, lω ≪
min

(
c,

√(
∂P
∂ρ

)
S

)
, for convenience. This assumption obvi-

ously conflicts with the input signal x0(t) = Aδ(t) in sect. 2.2,

but it does not affect the result. In real physics processes
with continuous time, an impulse in the form of a Dirac
delta function δ(t) = 1

2π

∫ ∞
−∞ exp(iωt)dω does not exist. A

real impulse can be treated as a process only contains low-
frequency components 1

2π

∫ ω0

−ω0
exp(iωt)dω with a very large

cut-off frequency ω0 (in compact matter, ω0 can be as large
as 1023 rad/s, which is similar to the frequency of a 100 MeV
γ-ray). This implies that the low frequency assumption is
reasonable.

In the derivation, although we adopt the retarding force,
the potential field is delayed rather than the force in fact.
The retarding potential not only affects the action time of the
force, but also can affect its strength. With a low frequency
assumption, the particle movement speed is far less than the
speed of light, which means that we can ignore variations in
the strength caused by the retarding potential.

In the longitudinal wave, the magnetic field caused by the
movement of particles (if the particles are charged) has no ef-
fect, but in the transverse wave, the magnetic field can make
a difference. With the low frequency assumption, however,
this magnetic field is so weak that its effect can be ignored.
Thus, the assumption of conservative force loses no efficacy.

Additionally, we can ignore the electromagnetic radiation.
With the low frequency assumption, the variation in the field
energy density is too weak, which leads us to use mass den-
sity instead of energy density in our derivation.

3.1.3 Short-range assumption

To simplify the equation, we adopt the “short-range” assump-
tion, k ≪

(
∂P
∂ρ

)
S

1
l2ω2 . In fact, this “short-range” is not a

short distance at all. For typical parameters in dense mat-
ter ω = 1010 rad/s, l = 10−15 cm, and ∂P

∂ρ
= 1020 (cm/s)2, this

limit is 1020 cm, which is much larger than the length scale
of a compact star.

3.1.4 Rigid boundary assumption

In sect. 2.2, the rigid boundary assumption is adopted to limit
the displacement of the last particle. In fact, this boundary
condition can be replaced by others, e.g., the free boundary
condition. For a free boundary, this assumption implies that
the average point of each particle is also the force balance
point, F(x)

∣∣∣
x=l = 0. In this case, the feedback of the last

particle should be adjusted to “–”. However, this would not
significantly change the final sound speed.

3.2 Waveform variation

For a traditional sound wave, the waveform is invariant dur-
ing propagation. But in the discrete medium, this is not so.
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In the particle chain, the input signal x0(t) is restricted to
being continuous, which implies that the strength of the force
on other particles is continuous, i.e., the second time deriva-
tive of particle’s displacement is continuous. But the input
signal does not always have a continuous second time deriva-
tive, which means that the waveform could change while
propagating. A variation in a waveform indicates that the
sound speed varies with frequency. Thus, the sound wave
dispersion is a corollary of a discrete medium.

In addition to the dispersion, even for a single frequency
wave, the amplitude would vary, as shown in eq. (7). This ef-
fect is due to the retarding force. If the amplitude is assumed
to be invariant, the total work of resultant force on each parti-
cle in one period would be nonzero. This means that a system
with a sound wave with invariant amplitude is unstable, i.e.,
the amplitude of the sound wave must change. The amplitude
variation does not mean that the energy dissipates; actually,
the energy is simply reflected. As with the evanescent wave,
the energy of a sound wave is reflected and its amplitude de-
creases.

As shown in eq. (14), the oscillation of the output signal
becomes increasingly violent with time, and this is obviously
unreasonable. In fact, this enhancement cannot occur be-
cause of the small amplitude assumption (although the input
signal, x0(t) = Aδ(t), also violates this assumption). If the
amplitude increases to a very large value, the system would
become nonlinear and the derivation in sect. 2.2 would fail.
In addition, the ringing after peak time is not overshot, be-
cause the amplitude of the Dirac delta function is infinity
(as is its energy). We know that the Bessel function Jν(θ)
oscillates at a large θ with a period 2π, so we can define
a characteristic frequency of this system like the eigenfre-

quency ωc =

√
2
l2

(
∂P
∂ρ

)
S

. This frequency describes the os-
cillation property of a chain and is also the limit of the “low
frequency.”

3.3 Sound speed and strangeon star

With the traditional sound speed formula, it has been proved
that the mass of a neutron star should be less than 3.2 M⊙
[23], and a “safe” upper limit for the mass of a neutron star,
2.9 M⊙, can also be obtained [30]. But in strangeon matter,
the sound speed no longer limits the matter state. As such,
the maximum mass of a strangeon star could easily exceed
3.2 M⊙, and can even be much higher.

This result may explain the “mass gap” puzzle. It was
found that there could be “gap” between the least mas-
sive black hole and the upper limit mass for a neutron star
[31]. The lower bound of the 1% quantile from each black
hole mass distribution has also been shown to be about

4.3 M⊙ [32]. With the strangeon star model, this puzzle could
be explained if the maximum mass of a strangeon star can
reach ∼ 4 M⊙.

Also, the possibility of a value of ∂P/∂ρ larger than c2 also
results in quite a different tidal deformability of a strangeon
star. For conventional nuclear EoSs, it’s widely accepted that
the asymptotic sound speed is smaller than c/

√
3 in ultra-high

densities. By fixing an upper limit for ∂P/∂ρ accordingly, it
has been shown that the maximum mass of an EoS model
decreases as the tidal deformability decreases [33]. Similar
arguments are made for conventional quark stars within the
MIT bag model description and the consideration of a color-
flavor-locked phase [34]. Since the strangeon star can have
a ∂P/∂ρ value larger than c2 without violating causality, its
tidal deformability has been found to be compatible with the
observation of GW170817 [1], although its maximum mass
is very large [27].

4 Summary

In this paper, we calculated the oscillation propagation in a
discrete medium in both the frequency and time domains and
obtained the sound speed. Our results show that the signal
propagation speed would never exceed the speed of light, and
in the small (∂P/∂ρ)S case, its expression would degenerate
to the traditional form of sound speed. Thus, the strangeon
star model can be safely used without concern about its con-
flict with causality.

In the strangeon star model, the mass of pulsars can be
much higher, which implies that more massive pulsars may
be found, although the accurate mass of a pulsar is hard to
measure. In future work, the five-hundred-meter aperture
spherical radio telescope (FAST) may prove to be sufficiently
sensitive to detect weaker radio signals from pulsars far away,
and it could also provide higher precision timing results to
obtain the accurate mass of pulsars [35]. The discovery of
more massive pulsars is expected.
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