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Abstract The different timing results of the magnetar Swift J1822.3−1606 are ana-
lyzed and understood theoretically. It is noted that different timing solutions are caused
not only by timing noise, but also because the period derivative is decreasing after
the outburst. Both the decreasing period derivative and thelarge timing noise may
originate from wind braking associated with the magnetar. Future timing of Swift
J1822.3−1606 will help clarify whether or not its period derivative is decreasing with
time.
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1 INTRODUCTION

Magnetars are peculiar pulsar-like objects. They are assumed to be neutron stars powered by decay
of a strong magnetic field (Duncan & Thompson 1992). A neutronstar is often confirmed as a
magnetar if the dipole magnetic field at its surface is higherthan the quantum critical field (BQED =
4.4 × 1013 G). The dipole magnetic field at its surface is calculated fromthe period and period
derivative (assuming magnetic dipole braking, Kouveliotou et al. 1998). However, the assumption
of magnetic dipole braking also challenges the magnetar model. One example is the existence of a
low magnetic field magnetar (Rea et al. 2010; Tong & Xu 2012). Alternatively, it is possible that
magnetars are wind braking (Tong et al. 2013 and references therein). Wind braking would help to
explain the controversial timing results found in magnetarSwift J1822.3−1606.

Swift J1822.3−1606 is a magnetar candidate, discovered bySwift/BAT on 2011 July 14
(Cummings et al. 2011). Up to now, different timing results have been obtained for this source
(Livingstone et al. 2011; Rea et al. 2012; Scholz et al. 2012). The reported period derivative differs
by a factor of about three. The corresponding characteristic magnetic field can be larger or smaller
than the quantum critical field. This is directly related to whether or not this source is another low
magnetic field magnetar.

In papers describing their observations, Rea et al. (2012) and Scholz et al. (2012) mainly discuss
the effect of timing noise. In their opinion, it is the large timing noise that results in different period
derivative measurements in Swift J1822.3−1606. In this paper, we explore another effect: The period

∗ Supported by the National Natural Science Foundation of China.



1208 H. Tong & R. X. Xu

derivative of Swift J1822.3−1606 may be decreasing with time. Therefore, it is natural that different
period derivatives are obtained using different data sets.The physical reason may be that magnetars
are wind braking (Tong et al. 2013). A decaying particle windafter the outburst will result in a
decreasing period derivative.

Description of the model and quantitative calculations arepresented in Section 2. Discussion
and conclusions are presented in Section 3.

2 MODELING THE SPIN DOWN RATE OF SWIFT J1822.3−1606

2.1 Description of Observations and Theory

Rea et al. (2012) reported two period derivatives of Swift J1822.3−1606 (in sect. 3.2). Using obser-
vations from the first 90 d, a period derivative ofṖ = 1.6(4) × 10−13 was obtained (uncertainties
in the last digit are at the 1σ confidence level). Considering data from all the 275 d, the corre-
sponding period derivative iṡP = 0.83(2) × 10−13. These two values provide some hints that the
period derivative is decreasing with time. The large uncertainty in the data set covering a short time
may be caused by timing noise. Similar behavior can also be seen in Livingstone et al. (2011) and
Scholz et al. (2012). In Livingstone et al. (2011), using observations covering 84 d, a period deriva-
tive of Ṗ = 2.55(22) × 10−13 is reported. Using observations spanning 402 d, Scholz et al. (2012)
reported three solutions for period derivatives:Ṗ = 0.683(21) × 10−13 (fitting with period and
one period derivative),̇P = 1.71(7) × 10−13 (fitting with period and two period derivatives) and
Ṗ = 3.06(21)× 10−13 (fitting with period and three period derivatives).

Similar behaviors are also seen in other magnetars. Since the beginning of magnetar timing
studies, it has been found that magnetars have a higher levelof timing noise than do normal pulsars
(Gavriil & Kaspi 2002; Woods et al. 2002). Large variations in period derivative are seen in AXP
1E 2259+586 (Kaspi et al. 2003), AXP 1E 1048.1−5937 (Gavriil & Kaspi 2004), SGR 1806−20
(Woods et al. 2007) and AXP 1E 1547.0−5408 (Camilo et al. 2008). Two clear examples are
AXP XTE J1810−197 (Camilo et al. 2007) and the radio loud magnetar PSR J1622−4950 (Levin
et al. 2012). In these two sources, a decreasing period derivative is observed while the star’s X-ray
luminosity is decreasing after the outburst. Therefore, from previous observations, there may also be
large timing noise in Swift J1822.3−1606. At the same time, its period derivative may also decrease
with time (a decreasing X-ray luminosity is also observed).This may explain why a lower period
derivative is obtained when using a longer time span of observations.

The physics that explains a varying period derivative may bethat magnetars are wind braking
(Tong et al. 2013). The decay of a strong magnetic field will power the star’s X-ray luminosity.
At the same time, a (magnetism-powered) particle wind is also generated. The rotational energy of
magnetars is mainly carried away by this particle wind. A varying particle wind naturally results in
a varying period derivative. The fluctuations of this particle wind may account for the large timing
noise in magnetars. Since both the X-ray luminosity and the particle wind luminosity are from mag-
netic field decay, an estimate of the particle wind luminosity that is model independent isLp ∼ Lx,
whereLp andLx are the particle wind luminosity and the X-ray luminosity, respectively. The ori-
gin of this particle wind may be either internal (e.g., low amplitude seismic activities, Thompson
& Duncan 1996), or magnetospheric (e.g., coronal particles, Beloborodov & Thompson 2007). For
details of wind braking in magnetars and discussion of othermodels, see Tong et al. (2013) and
references therein.

2.2 Calculations for Swift J1822.3−1606

X-ray observations of Swift J1822.3−1606 have given its flux evolution with time. Using the flux
evolution function and its extrapolations, we can calculate the theoretical period derivative as a
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function of time. The longest time span of X-ray observations of Swift J1822.3−1606 has been done
by Scholz et al. (2012, with 400 d of observations). According to Scholz et al. (2012), a double
exponential flux decay model is preferred.

F (t) = F1 exp[−t/τ1] + F2 exp[−t/τ2] + Fq , (1)

whereF (t) is the 1−10 keV source flux as a function of time,t is in units of days after the BAT
trigger time (MJD 55756.5),τ1 = 15.5 d andτ2 = 177 d are the two decay time scales,F1 =
20.9 × 10−11 erg cm−2 s−1 andF2 = 1.74 × 10−11 erg cm−2 s−1 are the two flux normalizations
andFq = 3 × 10−3

× 10−11 erg cm−2 s−1 is the fixed quiescent flux (constrained byROSAT). See
Scholz et al. (2012, sect. 3.3 there) for details.

The rotational energy loss rate due to an isotropic particlewind is proportional toL1/2
p (sect. 3 in

Tong et al. 2013). Therefore, the period derivative will evolve with time asṖ (t) ∝ L
1/2
p ∝ L

1/2
x ∝

F (t)1/2 (short term evolution, e.g. several years). Including a constant factor

Ṗ (t) = N0 F (t)1/2 , (2)

whereN0 is the normalization constant. The observed period derivative is the average value over a
certain time span. Expanding the period at epocht1,

P (t) = P (t1) + Ṗ (t1)(t − t1) , (3)

whereP (t) andP (t1) are the rotation period at timest andt1, respectively, anḋP (t1) is the period
derivative att1. Therefore, the observed period derivative for time spant − t1 is (t is the end time,
t1 is the start time)

Ṗobs(t − t1) = Ṗ (t1) =
1

t − t1
(P (t) − P (t1)) . (4)

Rewriting the above equation,

Ṗobs(t − t1) =
1

t − t1

∫ t

t1

Ṗ (t′)dt′

= N0

1

t − t1

∫ t

t1

F (t′)1/2dt′

= N0g(t, t1), (5)

whereg(t, t1) =
∫ t

t1
F (t′)1/2dt′/(t − t1) andF (t) is obtained by fitting the observed flux decay

(Eq. (1)).
The timing of Livingstone et al. (2011) is done for a time spanof 85.5 − 1.5 d after the BAT

trigger time, but the timing of Scholz et al. (2012) is for a time span of404.5 − 2.5 d after the BAT
trigger time. According to Equation (5), the ratio of periodderivative between Scholz et al. (2012)
and Livingstone et al. (2011) should beg(404.5, 2.5)/g(85.5, 1.5) = 0.48. The observed value is
0.683(21)/2.55(22), for solution 1 (The cases of solution 2 and solution 3 will bediscussed in the
next section). The observation and theory are consistent within uncertainties. The same can also be
done for the timing of Rea et al. (2012). Using the observed flux decay there, the theoretical value of
period derivative ratio between observations spanning 275d and 90 d is0.60 and the observed value
is 0.83(2)/1.6(4). This shows the observation and theory are consistent with each other.

We can also plot the theoretical period derivative as a function of time span. Employing the
period derivative of solution 1 in Scholz et al. (2012) as thenormalization, the predicted period
derivative as a function of time is

Ṗobs(t − t1) = Ṗobs(404.5 − 2.5)
g(t, t1)

g(404.5, 2.5)
. (6)
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Fig. 1 Theoretical period derivative as a function of observed time span. The continuous line is the
theoretical period derivative. Circles are timing data from Rea et al. (2012). Squares are timing data
from Livingstone et al. (2011) and Scholz et al. (2012). The filled square is taken as normalization
of the theoretical curve. The error bars are 3σ.

The timing solutions in Livingstone et al. (2011), Rea et al.(2012) and Scholz et al. (2012) are taken
at different epochs (i.e., differentt1). However, the differences are only one or two days. Therefore,
this difference is negligible.t1 = 2.5 is assumed in the following calculations (the value oft1 in
Scholz et al. 2012).

Figure 1 shows the theoretical period derivative and the current observed data. The theoretical
curve (using solution 1 in Scholz et al. (2012) as normalization) is consistent with the timing of
Rea et al. (2012). The large uncertainties in the timing of Livingstone et al. (2011) and the result of
timing over 90 d from Rea et al. (2012) may be due to timing noise.

In the future, when longer time spans for observations are available, a smaller period derivative
is expected. For example, 800 d of timing observations will result in a period derivative oḟP =
0.44 × 10−13. This is the theoretical period derivative averaged over 800 d. If separate timings can
be done for the first 400 d and the last 400 d, a smaller period derivative is expected. Currently,
timings of 400 d give a period derivative oḟP = 0.683 × 10−13. A period derivative ofṖ =
0.19 × 10−13 is expected for only the last 400 d timing, which is about three times smaller. Future
timing observations of Swift J1822.3−1606 will help clarify whether or not its period derivative is
decreasing with time.

3 DISCUSSION AND CONCLUSIONS

The above calculations are mainly based on Equation (3). In Equation (3), only the first period
derivative is included in the expansion. The observedṖ is the average value of period derivative
over the observed time span. During timing studies, higher order period derivatives may also be
included (e.g., solution 2 and solution 3 in Scholz et al. 2012). When higher order period deriva-
tives are considered, the correspondingṖ will approach its instantaneous value at the expansion
epoch. Therefore, the reporteḋP represents an earlier value when higher order period derivatives
are included. If the physical spin down rate is decreasing with time, we should see a largerṖ when
higher order period derivatives are included. This is just the three timing solutions in Scholz et al.
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(2012). Therefore, the three timing solutions of Scholz et al. (2012) provide us with another piece of
evidence that the period derivative of Swift J1822.3−1606 is decreasing with time.

When calculating the theoretical spin down rate, the particle wind luminosity is assumed to be
equal to the soft X-ray luminosity. The actual wind luminosity may have a slightly different value.
After the outburst, the star’s X-ray luminosity decreases with time. Since the particle wind is also
from magnetic field decay, then it is natural that the wind luminosity also decreases with time.
Therefore, a decreasing period derivative is always expected irrespective of the details of particle
wind luminosity. In the long term, the X-ray luminosity willreturn to its quiescent value. The particle
wind will also relax to its quiescent state. The long-term predicted period derivative is very sensitive
to the condition of the quiescent state. When assumingLp = Lx, the period derivative at late time

will be Ṗ ∝ F
1/2
q , whereFq is the quiescent flux. For a quiescent flux ten times higher, the late time

period derivative will be three times larger.
The surface dipole field obtained by assuming magnetic dipole braking is only the effective

field strength. In the presence of strong particle wind, the rotational energy loss rate is amplified.
For a given period derivative, the resulting dipole field will be much lower (Tong et al. 2013). In
the actual case, the geometry (e.g., the magnetic inclination angle) will also affect the spin down
history of the neutron star (Tong & Xu 2012). In the case of normal pulsars, the assumption of
magnetic dipole braking is a reasonable lowest order approximation (Xu & Qiao 2001). However,
in the case of magnetars, the assumption of magnetic dipole braking will be too simple even at the
lowest order approximation. An alternative is that magnetars are wind braking (Tong et al. 2013;
Tong, Yuan, & Liu 2013). A decaying particle wind can result in a decreasing period derivative for
Swift J1822.3−1606.

Another explanation for the decreasing period derivative is the twisted magnetosphere model
(Thompson et al. 2002; Beloborodov 2009). After the outburst, the magnetar’s magnetosphere grad-
ually untwists. Therefore, the effect of the dipole magnetic field will decrease. This will cause a
decreasing period derivative. However, the twisted magnetosphere model may have difficulties in
explaining the variations in the period derivative that happen on a short timescale (Camilo et al.
2007; Levin et al. 2012). In the above wind braking of magnetars, the wind luminosity can vary
dramatically on short timescales. Such difficulties no longer exist in the wind braking model.

In conclusion, the different timing results of Swift J1822.3−1606 are caused not only by its
timing noise, but also by its decreasing period derivative.The decreasing period derivative and large
timing noise may have both originated from wind braking. Future timing observations of Swift
J1822.3−1606 will help to clarify whether or not its period derivative is decreasing with time. This
would also help us to answer whether or not wind braking is important in this source.

Acknowledgements The authors would like to thank P. Scholz for providing the observed values
of F1 and F2 and for explanations; and S. Dai and Y. Xie for discussions. H. Tong would like
to thank KIAA at PKU for support while visiting. This work is supported by the National Basic
Research Program of China (973 program, Grant Nos. 2012CB821800 and 2009CB824800), the
National Natural Science Foundation of China (Grant Nos. 11103021, 11225314 and 10935001),
West Light Foundation of CAS (LHXZ 201201), 100 Talents Project of Xinjiang, the Youth
Innovation Promotion Association, CAS and the XTP project.

References

Beloborodov, A. M., & Thompson, C. 2007, ApJ, 657, 967
Beloborodov, A. M. 2009, ApJ, 703, 1044
Camilo, F., Cognard, I., Ransom, S. M., et al. 2007, ApJ, 663,497
Camilo, F., Reynolds, J., Johnston, S., Halpern, J. P., & Ransom, S. M. 2008, ApJ, 679, 681
Cummings, J. R., Burrows, D., Campana, S., et al. 2011, The Astronomer’s Telegram, 3488, 1



1212 H. Tong & R. X. Xu

Duncan, R. C., & Thompson, C. 1992, ApJ, 392, L9
Gavriil, F. P., & Kaspi, V. M. 2002, ApJ, 567, 1067
Gavriil, F. P., & Kaspi, V. M. 2004, ApJ, 609, L67
Kaspi, V. M., Gavriil, F. P., Woods, P. M., et al. 2003, ApJ, 588, L93
Kouveliotou, C., Dieters, S., Strohmayer, T., et al. 1998, Nature, 393, 235
Levin, L., Bailes, M., Bates, S. D., et al. 2012, MNRAS, 422, 2489
Livingstone, M. A., Scholz, P., Kaspi, V. M., Ng, C.-Y., & Gavriil, F. P. 2011, ApJ, 743, L38
Rea, N., Esposito, P., Turolla, R., et al. 2010, Science, 330, 944
Rea, N., Israel, G. L., Esposito, P., et al. 2012, ApJ, 754, 27
Scholz, P., Ng, C.-Y., Livingstone, M. A., et al. 2012, ApJ, 761, 66
Thompson, C., & Duncan, R. C. 1996, ApJ, 473, 322
Thompson, C., Lyutikov, M., & Kulkarni, S. R. 2002, ApJ, 574,332
Tong, H., & Xu, R. X. 2012, ApJ, 757, L10
Tong, H., Xu, R. X., Song, L. M., & Qiao, G. J. 2013, ApJ, 768, 144
Tong, H., Yuan, J. P., & Liu, Z. Y. 2013, RAA (Research in Astronomy and Astrophysics), 13, 835
Woods, P. M., Kouveliotou, C., Göǧüş, E., et al. 2002, ApJ, 576, 381
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