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ABSTRACT
By assuming the formation of a black hole soon after the merger event of GW170817, the maximum mass of non-rotating stable
neutron star, MTOV � 2.3 M�, is proposed by numerical relativity, but there is no solid evidence to rule out MTOV > 2.3 M�
from the point of both microphysical and astrophysical views. It is naturally expected that the equation of state (EOS) would
become stiffer beyond a specific density to explain massive pulsars. We consider the possibility of EOSs with MTOV > 2.3 M�,
investigating the stiffness and the transition density in a polytropic model, for two kinds of neutron stars (i.e. gravity-bound and
strong-bound stars on surface). Only two parameters are input in both cases: (ρ t, γ ) for gravity-bound neutron stars, while (ρs,
γ ) for strong-bound strange stars, with ρ t the transition density, ρs the surface density, and γ the polytropic exponent. In the
matter of MTOV > 2.3 M� for the maximum mass and 70 ≤ �1.4 ≤ 580 for the tidal deformability, it is found that the smallest ρ t

and γ should be ∼0.50 ρ0 and ∼2.65 for neutron stars, respectively, whereas for strange star, we have γ > 1.40 if ρs > 1.0 ρ0

(ρ0 is the nuclear saturation density). These parametric results could guide further research of the real EOS with any foundation
of microphysics if a pulsar mass higher than 2.3 M� is measured in the future, especially for an essential comparison of allowed
parameter space between gravity-bound and strong-bound compact stars.
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1 IN T RO D U C T I O N

Neutron stars are the densest objects known in the Universe, typically
with a mass ∼1.4 M� and a radius ∼10 km. The equation of state
(EOS) of neutron star matter is a key issue in relativistic astrophysics
and nuclear physics (Weber 2005), that the properties of ultra dense
nuclear matter and its associated EoSs are related to bulk stellar
properties (mass, radius, moment of inertia), thermal evolution,
supernova, gamma-ray bursts, soft gamma repeaters, low-mass X-ray
binary, ground state of strong interaction, colour-superconductivity,
and other neutron star or nuclear physics phenomena. Currently,
the sign problem prevents us from predicting the properties of cold
dense matter in the first-principle calculations such as the lattice QCD
Monte Carlo simulations, so that phenomenological approaches are
developed to explore the inner part of neutron stars.

Nuclear physicists developed many-body theories to describe the
neutron star matter (dense matter) EOS, which is unclear at high
density, such as Green Function Monto Carlo method (Pieper &
Wiringa 2001), chiral perturbation theory (Gasser & Leutwyler
1984, 1985), Brueckner–Hartree–Fock (Brockmann & Machleidt
1971), quark mean field (QMF) model (Toki et al. 1998), quark
meson coupling model (Guichon 1988, Saito & Thomas 1994),
relativistic mean field (RMF) model (Serot & Walecka 1986),
and Nambu–Jona–Lasinio model (Nambu & Jona-Lasinio 1961).
Conventionally, a normal neutron star could divided into the core
and the crust parts. The outer crust below the neutron drip density,
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which is composed by nuclei arranged in lattices and relativistic
electron gas, provides a negligible contribution to the maximum
mass, MTOV (Pearson, Goriely & Chamel 2011). The EOSs of this
part are mainly determined by finite-nuclei mass that have slight
differences (we show a set of comparison in Fig. 1 below). The
Baym–Pethick–Sutherland (BPS; Baym, Pethick & Sutherland 1971)
EOS is commonly used to describe the neutron star out crust. The
core and inner crust are demarcated by the crust–core transition,
where nuclei split into uniform nucleus matter. Nucleus together
with leptons forms the core under the β equilibrium. However,
a neutron star could actually be a so-called strange quark star if
Witten’s conjecture is correct (Witten 1984, Alcock, Farhi & Olinto
1986, Haensel, Zdunik & Schaefer 1986), with free quarks to be the
composition. Furthermore, a strange star could be in a solid state if
quarks are condensed in position space (Xu 2003), and the basic unit
of such a star is strangeon (formally called strange quark cluster; Lai
& Xu 2017).

We may generally classify the neutron star models into two
categories, i.e. gravity-bound stars and strong-bound ones. Due to the
large asymmetry of neutron and proton (essentially the asymmetry
of up and down quarks), a high number density of electrons would
be necessary to suppress the β-decay of neutron to proton. Normal
matter bound by gravity on surface could meet the standard of such
an electron density, and the conventional neutron stars are therefore
gravity-bound, which usually have smaller radii with larger masses.
In an analogy to stable atomic nuclei with two-flavour symmetry,
three-flavoured strange matter is also supposed to be absolutely
stable on surface, i.e. self-confined by strong force. Stellar radius
becomes larger as the mass increases for such strong-bound strange
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Pulsar mass beyond ∼2.3 M� 4527

Figure 1. The EOS for gravity-bound and strong-bound star. The solid lines
A (ρt/ρ0, γ ) = (1.0, 2.9), B (ρt/ρ0, γ ) = (1.0, 3.2) and C (ρt/ρ0, γ ) = (0.7,
3.2) are neutron star EOS; the dash–dotted lines D (ρs/ρ0, γ ) = (1.5, 1.5),
E (ρs/ρ0, γ ) = (1.5, 1.8), and F (ρs/ρ0, γ ) = (1.2, 1.8) are strong-bound
star EOS. The dashed lines indicate the corresponding two origin pressure–
density relations for EOS A, B, and C. The thin solid line is the TM1 EOS.
The dotted line is the BPS EOS.

stars (either strange quark star or strangeon star). The EOS difference
of the gravity-bound and strong-bound stars is an interesting issue,
and we will measure this latter.

Bulk neutron star observation properties give constraints on the
EOS, among which maximum mass (MTOV), tidal deformability (�),
and moment of inertia (I) are dynamical and model-independent
measurements. We involve only the maximum mass and the tidal
deformability constraints in our calculation, since the measurement
of moment of inertia has insufficient precision at present. The 2 M�
pulsar observations [PSR J0348+0432 (Antoniadis et al. 2013),
PSR J1614-2230 (Demorest et al. 2010, Fonseca et al. 2016), MSP
J0740+6620 (Cromartie et al. 2020)] have imposed a lower strict
bound to the maximum mass of neutron stars. Therefore a very
stiff EOS is required to fulfill this mass constraint. Recently, the
neutron star merger event GW170817 offers a new probe to EOS of
dense matter, which provides a limit of 1.4 M� tidal deformability,
70 ≤ �1.4 ≤ 580 with low-spin (Abbott et al. 2017, 2018b). High-
spin �1.4 or binary tidal deformability �̃ may give different results
(Abbott et al. 2017, 2018a, De et al. 2018). Since the low-spin
result is in agreement with expectations from binary neutron star
spin measurements, we will use this constraint in our paper. From
various many-body methods and the tidal deformability up limit,
a roughly consistent 1.4 M� neutron star radius constraint refers
R1.4 ≤ 13.6 km (Annala et al. 2018; Tews; Margueron & Reddy
2018; Krastev & Li 2019), using the original findings �1.4 ≤
800 (Abbott et al. 2017). Based on NASA’s Neutron Star Interior
Composition Explorer (NICER; Gendreau et al. 2016) data set, it
is able to estimate neutron star mass and radii using X-ray pulse-
profile modelling (Raaijmakers et al. 2019). Neutron star radii as
an observable quantity is valuable to restrict the EOS. So, we
conclude this R1.4 ≤ 13.6 km bound in our paper as a contrast
of the �1.4 constraint. The stiffness of EOS plays the key role to
determine neutron star maximum mass, i.e. stiffer EOSs are required
for massive neutron stars. On the other hand, small radii detection
results (Raaijmakers et al. 2019) and constraints (Capano et al. 2020),

at least for some objects, seems implying soft EOS in low-density
range. We focus on the EOS stiffness and its density range in this
paper.

It is believed the merger event GW170817 may form a transitory
state like hypermassive or supermassive neutron star and eventually
becomes black hole. Based on this assumption, upper bounds on
MTOV supported by the EOS are placed to be MTOV � 2.3 M�. By
combining the total binary mass of GW170817 and electromagnetic
signal, Margalit & Metzger (2017) places an upper limit of MTOV

� 2.17 M�. The boundary MTOV � 2.28 M� is derived to limit the
ratio of the uniformly rotating neutron star maximum mass over
MTOV (Ruiz, Shapiro & Tsokaros 2018). From basic quasiuniversal
relations between MTOV and rotating maximum mass, a similar upper
limit is set to be MTOV � 2.33 M� (Rezzolla, Most & Weih 2018).
Shibata et al. (2019) employing the energy and angular momentum
conservation laws and numerical-relativity simulations get the cold
spherical neutron star EOSs, which gives maximum mass MTOV

� 2.3 M�. MTOV � 2.32 M� is obtained from the 15–23 per cent
assumption of the relation between maximum baryonic mass and
maximum gravitational mass (Abbott et al. 2020a). A measured mass
of PSR J2215+5135 from millisecond pulsars gives 2.27+0.17

−0.15M�
(Linares, Shahbaz & Casares 2018). However the MTOV � 2.3 M�
constraint may be exceeded if the final remain is a stable super-
massive neutron star rather than a black hole. A strange star could
have MTOV ∼ 2.32 M� when considering colour-flavour locking
phase (Zhou, Zhou & Li 2018). A 2.50–2.67 M� compact object is
detected in the binary merger event GW190814 (Abbott et al. 2020b),
which could either be the heaviest known neutron star or the lightest
known black hole. The maximum mass constraint should be beyond
2.3 M� if this 2.6 M� compact object is a neutron star. Godzieba
et al. (2020) use a Markov Chain Monte Carlo approach to generate
phenomenological EOSs and find that the presence of a normal
neutron star in GW190814 is consistent with present astronomical
constraints. Parameter set BigApple (Fattoyev et al. 2020) could
generate a 2.6 M� normal neutron star and reproduce the observables
of finite nuclei and NICER. MTOV ≥ 2.5 M� could be produced if
the degrees of freedom drastic changes (Tan et al. 2020). Due to
this black hole remnant assumption of GW170817, we consider this
MTOV ∼ 2.3 M� as a supermassive index to consider the possibility
of a more massive neutron star.

In view of the difficulty from the first-principle calculation,
generally, EOSs have several parameters, but a single two-parameter
family could offer an accessible approximation (Ofengeim 2020).
Polytropic model (Chandrasekhar 1939; Read et al. 2009; Raithel;
Özel & Psaltis 2016) has only two parameters (the polytropic
constant, K and the polytropic exponent γ ) and could model normal
phase or exotic phase (Lai & Xu 2009). Baron, Cooperstein & Kahana
(1985) have ever use a polytropic model which use incompressibility
as the pressure coefficient, together with the compressible liquid-
drop model EOS (Cooperstein 1985). They obtained relative small
maximum mass due to small K-parameter.

In this paper, we aim to use the simple two-parameter polytropic
model to clarify how stiff the pulsar EOS should be and where
the stiff EOS starts under the maximum mass (MTOV � 2.3 M�,
MTOV ≥ 2 M�), low-spin tidal deformability (70 ≤ �1.4 ≤ 580)
and radius (R1.4 ≤ 13.6 km) constraints. Furthermore, we also want
to know the essential differences between available two-parameter
range of gravity-bound and strong-bound stars. For the gravity-bound
neutron star, we apply the BPS EOS on the outer crust, and a two
segments polytropic model EOS on the inner crust and core part,
while the two segments boundary is insistent with the crust–core
boundary but consistent with EOS stiffness transform. Although
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4528 X. H. Wu, S. Du and R. X. Xu

Figure 2. The mass–radius relation (left) and mass-tidal deformabilities relation (right) for gravity-bound and strong-bound stars. The solid lines A (ρt/ρ0, γ )
= (1.0, 2.9), B (ρt/ρ0, γ ) = (1.0, 3.2), and C (ρt/ρ0, γ ) = (0.7, 3.2) are neutron star results; the dash–dotted lines D (ρs/ρ0, γ ) = (1.5, 1.5), E (ρs/ρ0, γ ) =
(1.5, 1.8), and F (ρs/ρ0, γ ) = (1.2, 1.8) are strong-bound star results. The dotted lines are strong-bound star with a crust.

two piecewise segments is simple constructed to show the stiffness
change with density, this measurement could focus on the stiffer
EOS that decisively influence the neutron star maximum mass and
radius. Since the EOSs should change uniformly, we merge these
two EOS segments smoothly into a new curve, which could still
characterize the EOS stiffness change without significant effect on
the neutron star mass and radius. Through this way, the newly formed
EOS could offer a comparison on the phenomenological EOSs
with characteristic stiffness and transition density, to be applicable
to the strong bound star EOS too. We apply the two-parameter
family polytropic model on these gravity-bound (transition density
ρ t, polytropic exponent γ ) and strong-bound (surface density ρs,
polytropic exponent γ ) scenarios, and focus on the mass–radius
relation which offers strong constraints. We also compare these two
free parameters, measures density range and stiffness, respectively,
under the same constraints. The results show that a smaller transition
density ρ t (or surface density ρs) and a larger polytrope of exponent
γ are always beneficial for stiffer EOS then larger maximum mass.
For the neutron star scene, the R1.4 constraint limits the transition
density which can not be too small. For normal neutron star of
MTOV > 2.3 M�, the smallest transition density and polytrope of
exponent are (ρ t/ρ0, γ ) = (0.50, 2.65). While for strange star of
MTOV > 2.3 M�, the ρs/ρ0 = (1.0 ∼ 2.0) correspond polytropic
exponent region should be γ > 1.40 if ρs/ρ0 > 1.0, and also
ρs/ρ0 < 1.58 when γ < 2.0. A smaller polytropic exponent in
the strong-bound system could derive similar maximum mass than
in gravity-bound system. We give details in the results part for
reference.

This paper is organized as follows. In the next section, we describe
the polytropic model and discuss the selection of these parameters.
The gravity-bound and strong-bound scenarios are discussed with
two free parameters. In Section 3, we compare the EOS stiffness and
mass–radius constraints in the parameter space. There is a conclusion
at last.

2 TH E M O D E L S

We apply two kinds of pulsar scenarios, gravity-bound star and
strong-bound star. Normal neutron star is a gravity-bound system,

which usually has smaller radius with larger mass. In contrast, strange
star as the strong-bound system has larger radius with larger mass.

2.1 Gravity-bound object on surface

We assume the neutron star has a soft crust and a hard core to support
higher mass. Our EOS is a combination of BPS EOS and a polytropic
model. We apply the BPS EOS when ρ < ρdrip, with ρdrip the neutron
drip out density. We assume a transition density ρ t, after which the
EOS becomes stiff to support a massive core. When ρ ≤ ρ t, the
pressure is assumed as the extension of the BPS EOS:

P1 (ρ) = KBPSρ
γBPS , (1)

in which the parameter KBPS and γ BPS are determined by BPS EOS,
PBPS (ρ) = KBPSρ

γBPS . When ρ ≥ ρ t we have

P2 (ρ) = K2ρ
γ . (2)

At the transition density ρ t, P1(ρ t) = P2(ρ t). Then, we have

K2 = KBPSρ
γBPS
t /ρ

γ
t . (3)

We use a new smooth curve to connect the two pressure lines with
different exponent γ BPS and γ ,

Pns (ρ) = A0

[(
ρ

ρt

)γBPSα

+
(

ρ

ρt

)γα] 1
α

, (4)

where

A0 = KBPSρt
γBPS . (5)

A larger α means the new curve closer to the origin two lines (the
BPS EOS and its extension before ρ t as well as the stiffer polytropic
model EOS). In this paper, α is set as α = 1 to obtain a smooth curve.
There are two free parameters in this model, the transition density ρ t

and the polytrope of exponent γ .

2.2 Strong-bound object on surface

Strange star (strange quark star and strangeon star) as a strong-bound
surface dense matter system has non-zero surface density. We use
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Pulsar mass beyond ∼2.3 M� 4529

Figure 3. The normal neutron star MTOV−�1.4 (left) and MTOV−R1.4 (right) distributions in ρt−γ parameter space. The solid lines show neutron star maximum
mass, and the dashed lines represent the 1.4 M� neutron star radius. Points A and B are examples for 2 M� and close to 2.3 M�, respectively. Point C is ruled
out by �1.4 ≤ 580 and R1.4 ≤ 13.6 km restricts.

Figure 4. The strange star MTOV−�1.4 (left) and MTOV−R1.4 (right) distributions in ρs−γ parameter space. The solid lines indicate strange star maximum
mass, and the dashed lines represent the 1.4 M� strange star radius. Points D, E, and F are examples close to 2 M�, 2.3 M�, and 2.5 M� strong-bound star,
respectively. Point D slightly beyond 70 ≤ �1.4 ≤ 580 restrict (see also Fig. 2).

the simple polytropic model with the pressure–density form:

Pss = Kssρ
γ . (6)

When γ = 1, this expression simplified to bag model (Alcock
et al. 1986). In this case, with the linear EOS, the bag constant B
corresponds to the surface energy, ρs = 4B. strong-bound star has
a sharp surface, that the pressure and density will decrease to zero
in the fermi scale, which will not affect the mass–radius relation.
We also involve the possibility that the strange star is enveloped in
thin nuclear crusts (e.g. Weber; Kettner & Weigel 1994; Kettner et al.
1995; Huang & Lu 1997; Madsen 1999; Xu 2003; Weber et al. 2012).

The pressure coefficient Kss is determined by the sound speed.
Ab initio calculations could constrain the sound speed up to 1 ∼
2 n0, but higher densities remain unconstrained (Tews et al. 2018).
Polytropic model may result in the superluminal problem due to
the sound speed vs = √

∂P/∂ρ monotonous increase with density,
however, Lu et al. (2018) have proved that the actual propagation
speed vsignal < c is always satisfied without destroying the causality.
We assume the stars are relativistic fluid and the sound speed square
v2

s equals the conformal limit 1/3 at the star surface that is assumed
at high density:

v2
s = dP

dρ
= Kssγργ−1

s = 1

3
. (7)
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Figure 5. The normal neutron star maximum mass–central density
(MTOV−ρ0) distribution in ρs−γ parameter space. The solid lines show
neutron star maximum mass, and the dashed lines represent the center density.
Points A and B are examples for 2 M� and close to 2.3 M�, respectively.

Figure 6. The strong-bound star maximum mass–central density
(MTOV−ρ0) distribution in ρs−γ parameter space. The solid lines indicate
strange star maximum mass, and the dashed lines represent the center density
with 2 ρ0 spacing. Points D and E are examples close to 2 and 2.3 M�
strong-bound star, respectively.

The pressure–density relation becomes

Pss (ρ) = 1

3γρ
γ−1
s

ργ , (8)

with two free parameters, the surface density ρs, and the polytropic
exponent γ .

3 TH E R ESU LTS

The EOS discussed above are shown in Fig. 1. Logarithmic coor-
dinates are used for the abscissa and ordinate, and in that case the

curve slope equals the exponent γ with density ρ. We use this nature
to extend the BPS EOS to the transition density ρ t for neutron star.
The solid lines A (ρ t/ρ0, γ ) = (1.0, 2.9), B (ρ t/ρ0, γ ) = (1.0, 3.2),
and C (ρ t/ρ0, γ ) = (0.7, 3.2) connect with BPS EOS are neutron
star EOSs, while D (ρs/ρ0, γ ) = (1.5, 1.5), E (ρs/ρ0, γ ) = (1.5,
1.8), and F (ρs/ρ0, γ ) = (1.2, 1.8) are strong-bound star EOSs with
a non-zero surface and pressure. Among these EOSs, A (D) and B
(E) have the same transition density ρ t (surface density ρs), while B
(E) and C (F) have the same polytropic exponent γ . The polytropic
exponent γ is the symbol of EOS stiffness. The gravity-bound star
EOSs we used has larger polytropic exponent γ compared with the
strong-bound star EOSs. The RMF theory with TM1 parameter set
provides excellent results for the properties of heavy nuclei ground
states and 2.18 M� neutron star (Sugahara & Toki 1994, Shen et al.
2011). We draw the TM1 EOS in Fig. 1 as a comparison. We found
that after neutron drip out density there exits a slope decrease, which
is considered as one of the reason that TM1 cannot support more
massive neutron stars.

Neutron star EOS combines the BPS EOS and a smooth curve
derived by two polytropic pressure–density relations with different
polytrope of exponent γ , in which the low-density pressure poly-
tropic exponent γ is same as the BPS EOS. Inserting the EOS
given by equations (4) and (8) into Tolman–Oppenheimer–Volkoff
equation, we have the mass–radius relations for gravity-bound and
strong-bound star, see Fig. 2. We also give the tidal deformabilities as
a function of neutron star mass in Fig. 2. A smaller transition density
also means large radius corresponds to a relatively large mass because
the hard core part could extend to lower density. The transition
density ρ t > ρ0 gives similar results with other effective models
(e.g. HKP020, QMF18, SLy9, DD2, DDME2, NL3-ωρ; Haensel,
Proszynski & Kutschera 1981, Zhu, Zhou & Li 2018). Stiffer EOS
gives larger maximum mass and larger tidal deformabilities. But
strange star tidal deformabilities are smaller than normal neutron star
with similar maximum mass. Line C (ρ t/ρ0, γ ) = (0.7, 3.2) exceeds
the �1.4 range and breaks the R1.4 restrict. Line D has �1.4 � 68 that
slightly exceeds the �1.4 constraint. Strange quark star or strange
on star may have a crust that have a maximum density less than the
neutron drip density, so that the Coulomb repulsive force can avoid
the crust be absorbed by the strange star. We noticed that the mass–
radius relation become normal neutron star like after adding the crust
since the crust is gravity-bound by the strange star core. Besides, the
crust mass is so small compared to the strong-bound star core that
it negligibly increase the star mass but enlarge the radius when the
strong-bound star core is not massive enough. Gravity-bound star
model A (B) and strong-bound star model D (E) have very similar
maximum mass, while neutron star model polytropic exponent γ is
larger. This implies a gravity-bound system needs stiffer EOS than
strong-bound system to reach the same maximum mass.

Fig. 3 show the maximum mass and 1.4 M� neutron star tidal
deformabilities (radius) distributions in the transition density and
polytropic exponent (ρ t−γ ) parameter space (which can extend to
higher values). Points A and B have the same transition density
ρt = 1.0 ρ0, while points B and C have the same polytropic exponent
γ = 3.2. A narrow area starts from (ρ t/ρ0, γ ) = (0.50, 2.65) is
available for M ≥ 2.3 M� and �1.4 < 580. This area can certainly
extend to overstep this figure range. The strong constraint M ≥ 2 M�
provides wider (ρ t, γ ) scope. From this figure, a larger polytropic
exponent γ is needed to reach neutron star maximum mass limit,
and the small transition densities ρ t are restricted by the 1.4 M� tidal
deformability. Compared with these two distributions, it is found that
radius range 9.8 km < R1.4 < 13.8 km roughly consist with 70 ≤
�1.4 ≤ 580.
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Strange star usually use the surface density (ρs/ρ0) = (1.0 ∼ 2.0).
Fig. 4 gives the similar distributions for strong-bound object. Points
D and E have the same surface density 1.5 ρ0, while points E and F
have the same polytrope of exponent γ = 1.8. From our calculation,
all the parameter range (ρs/ρ0, γ ) = (1.0 ∼ 2.0, 1.0 ∼ 2.0) satisfy the
R1.4 ≤ 13.6 km limit. But �1.4 ≥ 70 exclude larger surface density
that ρs < 1.58 if γ < 2.0. 2 M� strong-bound system needs γ >

1.18, and γ > 1.40 for 2.3 M� strong-bound system. strong-bound
star scene could have massive maximum mass and relatively small
tidal deformability simultaneously. R1.4 < 12.5 is needed by ρs ≥
1.0, and R1.4 > 10.5 is roughly consistent with �1.4 ≥ 70.

An evidence trend is observed that the pulsar maximum mass
increase with larger polytropic exponent γ and smaller transition
density ρ t (surface density ρs) for gravity-bound scene (strong-bound
scene). An obvious phenomenon is found that the gravity-bound star
EOS are stiffer than the strong-bound star to attain similar neutron
star maximum mass.

Figs 5 and 6 are the mass and the central density distribution in
the ρ t(ρs) − γ parameter space for normal neutron star and strange
star, respectively. Smaller central density always match with larger
maximum mass and normal neutron star has larger central density
than strange star with the same maximum mass. The deconfined
quark matter is expected to appear at relative high density, beyond
where quarks can no longer considered belonging to specific baryons.
For a typical baryon radius rb = 0.5 fm, quark percolation could
occur at 1/

√
2(4/3πr3

b )/ρ0 ≈ 8.44 ρ0 (face centre cubic). From
which the polytropic exponent should have an alter value that quark
matter construction replaced original hadronic matter. In other words,
the polytropic model should have another segment. Since the core
part contribute most to the neutron star, a smaller transition density
(surface density) will lead to smaller central density with the same
maximum mass.

4 C O N C L U S I O N S

The existence of massive neutron star requires stiff core EOS.
However, the tidal deformability restrict and supernova explosion
prefer a soft normal neutron star crust. We apply the polytropic
model to examine how stiff the neutron star EOS should be and
the transition density (surface density) range. We apply vanishing
surface density for normal neutron star and non-zero surface density
for strange star. For the normal neutron star scenario, we merge the
two EOS segments smoothly into a new curve, so that the total EOS
could change uniformly. To measure and compare normal neutron
star and strange star EOSs, we apply the two-parameter family (ρ t

or ρs, γ ) polytropic model. These two characteristic EOS stiffness
and transition density (surface density) parameter space could offer
a reasonable range for phenomenological EOS.

A small transition density ρ t > 0.50 ρ0 and a large polytropic
exponent γ > 2.65 are beneficial to the MTOV > 2.3 M� conventional
neutron star, while for MTOV > 2.3 M� strange star, the polytropic
exponent γ > 1.40 is required to ρs ∼ 1.0 ρ0. A small transition
density (ρ t/ρ0 < 0.50 for 2.3 M�) may break the 1.4 M� tidal
deformability restrict, while strong-bound system model requires
ρs/ρ0 < 1.58 for γ < 2.0. As a strong-bound system, strange star
could have smaller radius and larger mass with the same polytropic
exponent compared with normal neutron star. By comparing the
MTOV−�1.4 and MTOV−R1.4 distributions we derive rough results of
common neutron star radius range, which is 9.8 km < R1.4 < 13.8 km
for normal neutron stars and 10.5 km < R1.4 < 12.5 km for strange
stars. With this work, we transform the mass–radius and mass-tidal
deformability constraints into the stiffness transition density and the

polytropic exponent (stiffness measurement parameter) parameter
space. These are meaningful for other phenomenological model,
especially for an essential comparison of allowed parameter space
between gravity-bound and strong-bound compact stars.
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A P P E N D I X A : FU RT H E R E X P L A NAT I O N FO R 2
POLY TROPIC PIECES NORMAL NEUTRO N
STAR EOS

Typically, three polytropic pieces plus the fixed outer crust are
needed to reproduce known EOS models (Read et al.Read et al.

2009, Annala et al. 2018). However, as we have mentioned that
the two polytropic pieces with two-parameter family could offer
an accessible approximation, and could display the stiffness and
transition density intuitively. In this appendix A, we intend to further
explain the feasibility of two polytropic pieces through performing
the four polytropic pieces EOS and the α parameter effect in
equation (4).

Following the work of Kurkela et al.Kurkela et al. (2014), the
four polytropic pieces correspond to the outer crust, the inner crust,
the nuclear matter, and the perturbative quantum chromodynamics
(pQCD) matter, which have polytropic exponent γ 1 = γ BPS, γ 2,
γ 3, and γ4 = 1 (v2

s = 1
3 ), respectively. We set the interface densities

as ρdrip = 4 × 1011 g cm−3 (neutron drip density between outer
crust and inner crust), ρcc = 0.1 fm−3 ≈ 1.66 × 1014 g cm−3

(crust–core interface density, it varies from different model), and
ρpQCD = (8 − 10) × ρ0 (pQCD matter, quark percolation, appears).
Then, we have the maximum mass and 1.4 M� neutron star tidal
deformabilities (radius) distributions in the γ 2−γ 3 parameter space
(Figs A1 and A2).

Figs A1 and A2 show that to satisfy the 70 ≤ �1.4 ≤ 580
constraint, inner crust stiffness γ 2 lies in a range close to γ BPS

≈ 1.20. Therefore, equation (1) is a reasonable assumption, which
could consider as the description of outer crust and inner crust (the
soft part). Fig. A3 gives the effect of parameter α in equation (4)
with the example EOS B (1,3.2). When α ≤ 0.3, the interpolation
pressure keeps away from the origin pressures. When α ≥ 3, the
interpolation pressure keeps very close to the origin pressures and
have little effect on the mass–radius relation. α = 0.5 gives proper
interpolation pressure but larger biased mass–radius relation. We
select α = 1 in our paper to offer a smooth curve and may present
a possible different stiffness between the soft part and the stiff
part.

Figure A1. The normal neutron star MTOV−�1.4 (left) and MTOV−R1.4 (right) distributions in γ 2−γ 3 parameter space. The solid lines show neutron star
maximum mass, and the dashed lines represent the 1.4 M� neutron star tidal deformabilities (radius). The pQCD matter appears at 8ρ0.

MNRAS 499, 4526–4533 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/3/4526/5921220 by N
ational Science and Technology Library -R

oot user on 11 N
ovem

ber 2020

http://dx.doi.org/10.3847/2041-8213/aa991c
http://dx.doi.org/10.1103/PhysRev.122.345
http://dx.doi.org/10.1103/PhysRevC.83.065810
http://dx.doi.org/10.1146/annurev.nucl.51.101701.132506
http://dx.doi.org/10.3847/2041-8213/ab451a
http://dx.doi.org/10.3847/0004-637X/831/1/44
http://dx.doi.org/10.3847/2041-8213/aaa401
http://dx.doi.org/10.1088/0067-0049/197/2/20
https://arxiv.org/abs/2006.16296
http://dx.doi.org/10.3847/1538-4357/aac267
http://dx.doi.org/10.1016/j.ppnp.2004.07.001
http://dx.doi.org/ 10.1103/PhysRevD.30.272
http://dx.doi.org/10.1088/1009-9271/3/1/33
http://dx.doi.org/10.3847/1538-4357/aacc28


Pulsar mass beyond ∼2.3 M� 4533

Figure A2. The normal neutron star MTOV−�1.4 (left) and MTOV−R1.4 (right) distributions in γ 2−γ 3 parameter space. The solid lines show neutron star
maximum mass, and the dashed lines represent the 1.4 M� neutron star tidal deformabilities (radius). The pQCD matter appears at 10ρ0.

Figure A3. α parameter effect in equation (4).
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