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The nature of pulsars is still unknown because of the non-perturbative effects of the fundamental strong inter-
action, so various models of pulsar inner structures are suggested, either for conventional neutron stars or quark
stars. Additionally, a quark-cluster matter state is conjectured for cold matter at supranuclear density, and as a
result pulsars can be quark-cluster stars. Besides understanding the different manifestations, the most important
issue is to find an effective way to observationally differentiate these models. X-ray polarimetry plays an important
role here. The thermal x-ray polarization of quark/quark-cluster stars is focused on, and while the thermal x-ray
linear polarization percentage is typically higher than ∼10% in normal neutron star models, the percentage of
quark/quark-cluster stars is almost zero. This could then be an effective method to identify quark/quark-cluster
stars by soft x-ray polarimetry. We are therefore expecting to detect thermal x-ray polarization in the coming
decades.
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The study of pulsars is not only important in un-
derstanding the diverse phenomena of high-energy as-
trophysics, but also significant in fundamental physics.
The nature of the compressed baryonic matter in pul-
sars is still uncertain because of the non-perturbative
effects of the fundamental color interaction.[1] In view
of the high density, there are two types of models:
gravitation-bound and self-bound ones. The normal
neutron star model is a typical representative of the
former, while the quark/quark-cluster model belongs
to the latter. Although both models might explain
the thermal x-ray spectra of pulsars, the polarization
behaviors would be quite different.

A normal neutron star (more generally, a hadron
star or mixed star) as a gravitationally confined ob-
ject must have an atomospheric envelope composed
of normal matter with a pressure gradient to link
the high pressure interior and zero pressure outside.
However, this envelope would not be necessary for
a self-bound body, such as a bare quark star or
quark-cluster star. Phenomenologically, some obser-
vations may hint that a bare and self-confined surface
might exist in order to naturally understand differ-
ent observational manifestations (e.g., sub-pulse drift-
ing, a non-atomic spectrum, and clean fireballs for
supernova/𝛾-ray bursts).[2] It is expected that because
of the low temperature gradient of a surface with de-
generate electrons, the linear polarization of thermal
x-ray emissions from quark-cluster stars will be very
low,[3] however, a quantitative calculation has never
been presented. In this Letter, we calculate the polar-
ization behavior of quark-cluster stars and compare

our results to the pre-existing conclusion of neutron
stars[4] in order to test pulsar structure models by fu-
ture advanced x-ray polarimetries.

There are two mechanisms for generating the ther-
mal x-ray polarization of pulsars. The separatrix is the
critical magnetic field, 𝐵q≃4×1013 G. For a weak mag-
netic field, i.e. 𝐵 < 𝐵q, the quantum vacuum effect
can be negligible. It is worth noting that the accretion-
induced neutron star magnetic field away from the
polar could still be very strong, even though accre-
tion makes the polar field decay.[5] X-ray polarimetry
may hence provide a direct measurement of the sur-
face field.

When x-rays propagate across the magnetic 𝐵-
field, there are two independent linear polarization
eigenmodes: the ordinary mode (O-mode, the electric
field in the plane of the wave vector and the 𝐵-field)
and the extraordinary mode (E-mode, perpendicular
to the plane). However, the opacity coefficients of a
magnetized thermal plasma are different for them.

Gnedin and Sunyaev (1974) presented an approx-
imation about the cross section of photon-electron
scattering for photon frequency 𝜔 ≪ 𝜔c ≡ 𝑒𝐵/𝑚𝑒𝑐 =

11.6 × 𝐵12 keV (𝑚e is the mass of the electron and
𝐵12 = 𝐵/1012 G) and the angle between the wave vec-
tor and the 𝐵-field 𝜃 > (𝜔/𝜔c)

1/2,[6]
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where 𝜎O , 𝜎E are the cross sections of the O-mode and
E-mode, respectively, and 𝜎

T
is the Thomson scatter-
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ing cross section. For normal pulsars of 𝐵 ≃ 1012 G,
𝜃 ≫ (𝜔/𝜔c)

1/2, one has 𝜎
O
≫ 𝜎

E
. This implies that

the average free path length of the O-mode photon
𝐿1 is far less than that of the E-mode photon 𝐿2

(see Fig. 1, i.e., different photospheres for these two
modes), and hence the optical depth depends on its
polarization behavior. Due to the temperature gradi-
ent, the E-mode intensity will be much higher than
the O-mode one, and the thermal x-rays are thus po-
larized. X-ray polarimetry will therefore provide a
temperature gradient measurement of the pulsar sur-
face. Pavlov and Zavlin (2000) concluded that the
linear polarization of a normal neutron star could be
as high as 10%–30%.[4]

In the case of magnetic field 𝐵 > 𝐵q, an additional
quantum vacuum effect due to quantum electrody-
namics (QED) will also cause polarization of thermal
x-ray radiation.[7−9] Lai and Ho[9] demonstrated that
a QED vacuum effect, called vacuum birefringence,
emerges for 𝐵 ≥ 7 × 1013 G, and found a very high
average polarization at 10%–100% for magnetars.[8]

The above are previous thermal x-ray polarization
results of normal neutron stars/magnetars. For com-
parison, we calculate the thermal x-ray polarization in
the quark-cluster star model, as follows.

Thermal conductivities (𝜅) of degenerate electrons
inside quark or quark-cluster stars can be conveniently
expressed through effective electron collision frequen-
cies, 𝜈ee,[10]

𝜅 =
𝜋2𝑘2

B
𝑇S𝑛e

3𝑚e𝜈ee
, (3)

where 𝑛e, 𝑇S denote the number density of the elec-
tron and the temperature of the quark star surface,
respectively, and 𝑘

B
is the Boltzmann constant. The

effective electron collision frequencies can be derived
by[11]
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where 𝛼 = 𝑒2/ℎ̄𝑐 is the fine structure constant, and
𝜀
F

= ℎ̄𝑐(𝜋2𝑛e)
1/3 is the Fermi energy of the degener-

ate electrons.
In order to explicate that the polarization of

thermal radiation from a quark-cluster star is small
enough to be ignored, we calculate the maximum lin-
ear polarization (𝑃max) just for 𝜃 = 90∘,

𝑃max =
|𝐽O − 𝐽E|
𝐽O + 𝐽E

∼ |𝜎𝑇 4
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𝑇 4
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2

, (7)

where 𝐽O and 𝐽E is the x-ray intensity of the O-mode
and E-mode, respectively, 𝑇1 (𝑇2) is the average tem-

perature where the O-mode (E-mode) photons could
come out from, and 𝜎 is the Stefan–Boltzmann con-
stant. If the thermal conductivities of strange quark-
cluster matter are extremely high, then the tempera-
ture gradient would be very small. Therefore, approx-
imation 𝑇S − 𝑇1 ≪ 𝑇S − 𝑇2 ≪ 𝑇S, and Eq. (7) will be
reasonable,

𝑃max ≃ |𝑇 4
S − 𝑇 4

2 |
𝑇 4
S + 𝑇 4

2

≃ 𝑇 3
S · ∆𝑇

2𝑇 4
S

=
∆𝑇

𝑇S
, (8)

where ∆𝑇 ≡ 𝑇2 − 𝑇S.
For the approximation of black body radiation, the

energy flux density 𝐽r is

𝐽r = 𝜎𝑇 4. (9)

However, for thermal conduction, the energy flux den-
sity 𝐽c is expressed as

𝐽c = 𝜅 · ∇𝑇 ≃ 𝜅
∆𝑇

𝐿2
. (10)

One has 𝐽r = 𝐽c since there is no energy source near
the quark-cluster star surface. Combining Eqs. (9) and
(10),

∆𝑇 =
𝜎𝑇 4

S𝐿2

𝜅
. (11)

Considering the propagation of E-mode photons, we
could have the free path length,

𝐿2 ≃ 1

𝑛e𝜎E

𝜀
F

𝑘B𝑇S
, (12)

where a factor of 𝜀
F
/𝑘

B
𝑇S is introduced because only

electrons near the Fermi surface could scatter off the
x-rays.

According to Eqs. (2), (3), (8), (11) and (12), one
comes to

𝑃max ≃ 6𝜎𝑇S𝑚e𝜈ee𝜔
2
c𝜀F

𝜋2𝑘3
B
𝑛2
e𝜎T,corr𝜔2

, (13)

i.e., 𝑃max ∝ 𝜔−2, where the relativity correction is
included.[12]
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B 
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Fig. 1. A schematic diagram of thermal x-ray polariza-
tion originating from the pulsar surface, where the QED
vacuum polarization effects are not included. The E-mode
photons come from a deeper and hotter place than that of
the O-mode.

We calculate the maximum linear polarization (to
maximize the polarization, we consider the head-on
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collisions of photons and electrons) for typical param-
eters of 𝑛b = 1.5𝑛0 and 𝑛e = 10−4𝑛b, where 𝑛b is the
number density of baryon in a quark-cluster star, with
𝑛0 the number density of nuclear matter. The results
are shown in Fig. 2, which shows that the polarization
of thermal radiation from a quark-cluster star is too
small to detect.
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Fig. 2. The thermal x-ray polarization of a quark-cluster
star as a function of photon energy, for parameterized tem-
peratures (𝑇 ) and magnetic fields (𝐵).

There is an unexceptionable source to test the
models: RX J1856.5-3754. Discovered in 1996,[13]

it is the brightest of all the isolated neutron stars.
The x-ray spectrum of RX J1856.5-3754 can be ad-
equately fitted by a blackbody spectrum. The non-
variable thermal spectrum shows that we indeed see
the surface of this pulsar directly. The state of matter
for a very stiff equation of state (EoS) constrained by
its small radius is always controversial,[14,15] although
the stiff EoS could be understood by a Lennard–Johns
quark matter model.[16] It is demonstrated that the
maximum mass of a H-cluster (a particular but re-
alistic kind of quark cluster) star could approach or
even exceed 3𝑀⊙,[17] and the pulsar mass statistics of
recent results[18] could then be understood, although
one should know both the mass and radius to infer
the composition. Furthermore, the neutron star model
needs a very strong magnetic field to explain the ab-
sence of spectral lines, while the quark/quark-cluster
star model does not.[19]

In the regime of a normal neutron star, the fea-
tureless Planckian spectrum of RX J1856.5-3754 may
hint at a superstrong 𝐵-field, in which unique signa-
tures of the vacuum polarization emerge. The field
would be so strong that the outermost layer might be
in a condensed solid or liquid. We can also calculate
the polarization of the neutron star in the model pro-
vided in Ref. [20], and the results are shown in Fig. 3,
with the photon energy fixed at 0.25 keV. It is evi-
dent that significant linear polarization could also be
detectable even if the 𝐵-field is really so strong that
the surface is condensed. It is worth noting that the

observed x-ray flux peaks are located at a few hun-
dred electron-volts, where x-ray polarization can be
measured using a multilayer-based polarimeter.[21]

Soft 𝛾 repeaters (SGRs) and anomalous x-ray pul-
sars (AXPs) are all magnetar candidates. However,
it is not necessary to assume such a strong field to
explain the large period derivative and enormous en-
ergy release in the solid quark-cluster star model.[22]

Nonetheless, energy release due to magnetic field re-
connection will still be significant in order to under-
stand the observations of SGR/AXPs (especially those
of superflares) in conventional liquid quark star mod-
els (e.g., in a magnetic CFL phase[23]). Therefore,
x-ray polarimetry can also be a powerful way to test
the magnetar model.
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Fig. 3. The x-ray polarization of thermal radiation di-
rectly from a degenerate metallic condensed surface with
a strong magnetic field (𝐵). The vacuum polarization of
QED is included, for a photon energy at 0.25 keV, while
different emergence angles (𝜃, the angle between the mag-
netic field and the wave vector) are illustrated.

In summary, we have shown that x-ray polarime-
try will be a powerful tool to differentiate neutron star
models. In the weak field regime, as charged parti-
cles can hardly move perpendicularly to the magnetic
field, this leads to lower opacity for E-mode photons
with polarization perpendicular to the magnetic field.
Thus, E-mode photons can escape from deeper and
hotter regions (Fig. 1) in the atmosphere of neutron
stars than O-mode photons, resulting in high polar-
ization for thermal emission. The thermal x-ray po-
larization of quark/quark-cluster stars is truly negli-
gible because of the high thermal conductivity on the
surface. In normal neutron stars or magnetar mod-
els, however, the linear polarization of thermal x-rays
will be high enough to be detectable. The brightest
compact object, RX J1856.5-3754, with pure thermal
radiation, should be an ideal source for the soft x-ray
polarization observation, and a testbed of the com-
pressed baryonic matter problem. It is therefore worth
verifying the conjectures by advanced x-ray polarime-
try.
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The distinct thermal polarization predicted for
normal neutron stars and quark/quark-cluster stars
can be readily tested by future soft x-ray polarime-
ters, for example, the lightweight asymmetry and
magnetism probe (LAMP) project being developed in
China. LAMP will detect x-ray polarization at 250 eV
using multilayer mirrors at incidence angles near 45∘

with a sensitivity, in terms of minimum detectable po-
larization, of 5% or less for objects as bright as RX
J1856.5-3754. Therefore, it is capable of distinguish-
ing these two competing models.

We would like to thank Professor Zhang Shuang-
nan for encouraging our work, and acknowledge useful
discussions at the pulsar group of Peking University.
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