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PSR B1828−11: a precession pulsar torqued by a quark planet?
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ABSTRACT
The pulsar PSR B1828−11 has long-term, highly periodic and correlated variations in both

pulse shape and the rate of slow-down. This phenomenon may provide evidence for the pre-

cession of the pulsar as suggested previously within the framework of free precession as well

as forced. On a presumption of forced precession, we propose a quark planet model to this

precession phenomenon instead, in which the pulsar is torqued by a quark planet. We construct

this model by constraining the mass of the pulsar (Mpsr), the mass of the planet (Mpl) and the

orbital radius of the planet (rpl). Five aspects are considered: the derived relation between Mpsr

and rpl, the movement of the pulsar around the centre of mass, the ratio of Mpsr and Mpl, the

gravitational wave radiation time-scale of the planetary system, and the death-line criterion. We

also calculate the range of the precession period derivative and the gravitational wave strength

(at earth) permitted by the model. Under reasonable parameters, the observed phenomenon can

be understood by a pulsar (∼10−4–10−1 M�) with a quark planet (∼10−8–10−3 M�) orbiting

it. According to the calculations presented, the pulsar would be a quark star because of its low

mass, which might eject a lump of quark matter (to become an orbiting planet) during its birth.
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1 I N T RO D U C T I O N

The pulsar PSR B1828−11 shows long-term, highly periodic and

correlated variations in both the pulse shape and the slow-down rate.

Its variations are best described as harmonically related sinusoids,

with periods of approximately 1000, 500 and 250 d (Stairs, Lyne

& Shemar 2000). The phenomenon indicates the most compelling

evidence for precession (Link & Epstein 2001).

To explain this phenomenon, some authors (Jones & Andersson

2001; Rezania 2003) have proposed different models within the

framework of free precession. The observation could not be a prob-

lem in the standard view of neutron stars if the star’s crust is free

to precess. In Link & Epstein (2001), the correlated changes in the

pulse duration and spin period derivative can be explained as a pre-

cession of the star’s rigid crust coupled to the magnetic dipole torque.

Akgun, Link & Wasserman (2006) modelled the timing behaviour

with the inclusion of both geometrical and spin-down contributions

to the residuals. However, investigations concerned with the internal

structure of neutron stars show that free precession may be damped

out if vortices pinned to the stellar crust and hydrodynamic (MHD)

coupling are taken into consideration. In detail, the rotation of the

superfluid, accounting for a large proportion of the moment of in-

ertia of the pulsar, is contained in an array of vortices. Models, in

which vortices pinned to the stellar crust become unpinned dur-
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ing a glitch, might have described the occurrence of and recovery

from glitches (Alpar et al. 1984). The vortex pinning will damp out

free precession on time-scales of several hundred precession peri-

ods (Shaham 1977; Sedrakian, Wasserman & Cordes 1999) if the

pinning force is as strong as suggested in the glitch models. Addi-

tionally, the MHD coupling between the crust and the core will also

strongly affect precession of the pulsar (Levin & D’Angelo 2004).

The decay of precession, caused by the mutual friction between the

neutron superfluid and the plasma in the core, is expected to occur

over tens to hundreds of precession periods and may be measurable

over a human lifetime. As noted by Link (2003, 2006), the picture

of vortex lines entangled in flux tubes appears to be incompati-

ble with observations of long-period precession, which indicates

that the standard scenario of the outer core (superfluid neutrons

in co-existence with type II, superconducting protons) should be

reconsidered.

An alternative way is to consider the pulsar as a solid quark star

(Xu 2003), where precession models will not need to answer the

puzzle that damping out produces. However, there are still some

problems when we come to the model of free precession. For ex-

ample, the ellipticity (or dynamical flattening) of the pulsar derived

from the free precession model is not fitted well with the one cal-

culated by the Maclaurin approximation. Consider the pulsar as a

rotational ellipsoid with the principal moment of inertia Ix = Iy <

Iz and the corresponding radii a = b > c. In free precession models,

the stellar dynamical flattening is ε = (Iz − Ix )/Ix = e2/(2 − e2) =
P/Pprece ≈ 10−8, where P is the spin period, Pprece is the precession
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period of the pulsar and e =
√

1 − c2/a2 is the stellar eccentricity.

It can be approximated as e2/2 because e � 1. Meanwhile, from

Maclaurin approximation, the stellar ellipticity can be determined

by ε = [1 − (c/a)2/3]/(c/a)2/3 ≈ e2/3 ≈ 2ε/3 ≈ 3 × 10−3 P−2
10 m s ≈

2 × 10−6 (Xu 2006; Zhou et al. 2004). These two values, ε and

ε, which are expected to be generally matched if free precession

model is available, are quite different. Therefore, new ideas need to

be devised to explain the phenomenon of precession instead of the

free precession ones. Actually, a forced precession model driven by

an fossil disc was presented in Qiao et al. (2003).1

Here we present an alternative of a quark planet model to explain

the phenomenon of precession. In this model, forced precession is

caused by a quark planet orbiting the pulsar. In Section 2, first we

establish the relation between the mass of the pulsar and the orbital

radius of the planet, where the dynamical flattening is obtained

from Maclaurin approximation (Xu 2006). Then we explain why

the planet should be a quark planet, rather than a normal one such as

the Earth or Jupiter, when a planet model is referred to. Next we limit

the movement of the pulsar around the centre of mass by errors in

the TOAs (times-of-arrival). Death-line criterion and the limitation

on the gravitational wave radiation time-scale are also considered

so as to constrain the orbital radius, the mass of the pulsar and the

mass of the planet. In Section 3, we calculate the precession period

derivative and gravitational wave radiation strength of the pulsar

for different masses of the pulsar and orbital radii of the planet. In

Section 4, we conclude by discussing the formation of such a system

and share expectations of further observations to test the model.

2 P R E C E S S I O N TO R QU E D B Y A QUA R K
P L A N E T

First of all, we suppose that the pulsar PSR1828−11 could be either

a neutron star or a quark star, as both are candidate models for a

pulsar. In the case where the precession period is much more than

the spin period and the orbital period, the angular velocity of forced

precession can be expressed as (Menke & Abbott 2004)

α̇ = 3G Mpl

2ωr 3
pl

ε cos θpl, (1)

where α̇ is the precession angular velocity, ω is the rotational an-

gular velocity of the spinning pulsar, rpl is the orbital radius of the

planet, G is gravitational constant, Mpl is the mass of the planet, ε ≈
3ε/2 ≈ 3 × 10−6 is the stellar dynamical flattening and θpl is the

average inclination of the planet’s orbit. From equation (1) we can

have

Mpl = 8π2

3G P Ppreceε cos θpl

r 3
pl, (2)

where P = 2π/ωp is the spin period and Pprece = 2π/α̇ is the preces-

sion period of the pulsar. If we consider a normal planet similar to

the Earth or Jupiter, the typical value of rpl should be 0.1 or 1 au and

the corresponding value of Mpl is much larger than the solar mass. In

Fig. 1, the relation between Mp cos θpl and rpl is shown derived from

the 500-d precession period. We can see that if rpl reaches 109 cm

and θ pl is not close to 90◦, the mass of the planet will be greater

than the solar mass. A planet located 1 au away from the pulsar

1 In this Letter, the authors obtained the stellar oblateness from the Maclaurin

approximation and considered the precession as the whole star’s motion, not

only the crust’s. Thus we think here that a solid quark star is a better idea

than a neutron star, so as to prevent decay of precession.
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Figure 1. Relation between Mpl and rpl for a 500-d precession period from

equation (2). We can have Mpl cos θpl ≈ Mpl if θpl is not close to 90◦. The

figure indicates that a reasonable value of Mp(Mpl < M�) may be found

while rpl is less than 109 cm.

needs to be of several billion M� to provide enough torque. We

cannot believe the existence of such a planet as it would definitely

induce huge orbital timing effects in the pulse residuals. However,

the result is not surprising because the pulsar has a much shorter

forced precession period and thus the torque that dominates the pre-

cession needs to be much stronger. Meanwhile, precession torque

is reduced when the distance between the pulsar and the planet be-

comes longer. Consequently, if there is a planet close to the pulsar,

it may be able to provide enough torque to cause the short-period

precession. That is the reason that we consider a quark planet as its

orbital radius could mainly depend on the kick energy, which can

vary over a large range (Section 4).

Therefore, we suppose that the orbital radius of the planet is

between 106–109 cm, where 106 cm is typical radius of a normal

neutron star. Besides, for PSR B1828−11, the errors in the TOAs

are limited by random noise to about τ c ≈ 0.2 ms (Stairs et al.

2000). Thus in such a planetary system, the pulsar is not likely to

move more than about τ c c ≈ 6 × 106 cm around the centre of mass,

and its orbital radius should be less than 3 × 106 cm. In addition,

if the eccentricity of the orbit is not considerable, we can have

Mplrpl ≈ Mpsrrpsr, where Mpsr and rpsr are the mass of the pulsar and

its orbital radius around the centre of mass, respectively. Because

rpsr has a maximum rpsr,max = 3 × 106 cm, the relation can be derived

as Mplrpl < Mpsrrpsr,max. Finally, in such a planetary system, the mass

of the pulsar should be much larger than that of the planet, so we

assume approximately Mpsr/Mpl > k = 10.

Next we consider the gravitational wave radiation (GWR) of the

planetary system for further limitation. In normal double neutron

star system, the distance between the two stars is about 1010 cm.

Therefore the time-scale of the GWR is rather long, usually 104 yr

(Hulse & Taylor 1975; Taylor & Weisberg 1982). However, in this

quark planet system, due to the short distance between the two

objects, the power of the GWR may be even larger. In double-star

systems it is given by Misner, Thorne & Wheeler (1973)

dE

dt
= 32G4

5c5

μ2m3

a5
= 32G4 M2

psr M
2
pl(Mpsr + Mpl)

5c5a5
, (3)

where a � rpl is the semimajor axis of the orbit, m = Mpl + Mpsr,

and μ = MplMpsr/(Mpl + Mpsr) is the reduced mass. The total of

potential energy and dynamic energy of the planetary system is

Etot = − G Mpl Mpsr

2rpl

. (4)
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Thus the time-scale of the GWR can be derived as

τ = |Etot|
dE/dt

= 5c5r 4
pl

64G3 Mpl Mpsr(Mpsr + Mpl)
. (5)

If the planetary system is to be stable, the time-scale must be at least

a certain length. Here we approximately set that as τ > τ 0 = 104 yr ≈
3 × 1013 s.

Additionally, we consider the death-line criterion, which requests

the potential drop at the polar cap of the pulsar be more than φ0 �
1012 V (Ruderman & Sutherland 1975; Usov & Melrose 1995). If

we assume that PSR1828−11 is an aligned pulsar, the potential drop

is

φ ≈ πR2 B

cP
sin2 θ, (6)

where B is the polar magnetic field strength at the pulsar surface,

R ≈ [3Mpsr/(4πρ)]1/3 is the pulsar radius, ρ ≈ 7 × 1014 g cm−3 is

the density of the pulsar and θ = arcsin
√

2πR/(cP) is the open-

ing half-angle of the polar cap. Here we use the density for quark

stars to obtain the lower limit of Mpsr. The magnetic field can be

approximated by Manchester & Taylor (1977)

B ≈
√

3I c3 P Ṗ

8π2 R6
, (7)

where I ≈ (2/5)MpsrR2 is the principal moment of inertia. From

equations (6) and (7), the relation between potential drop and mass

of the pulsar can be derived as below

φ ≈
(

3

5

)1/2(
3π2

4

)1/3(
Ṗ

cP3

)1/2(
1

ρ

)1/3

M5/6
psr . (8)

While φ > φ0, we have

Mpsr >

(
2000c3ρ2 P9φ6

0

243π4 Ṗ3

)1/5

≈ 3 × 10−3 M�. (9)

Actually, the assumption of alignment in PSR B1828−11 is rather

strong. The potential drop from equation (6) can be more than one

order of magnitude larger if the inclination of the magnetic axis

to the spin axis is not zero (Yue, Cui & Xu 2006). Consequently,

constraint on the mass of the pulsar can be lower by about 1 mag

and thus we have Ms > 10−4 M�.

Now there are five limitations for Mpsr, rpl and Mpl:

Mpsr/Mpl > k, (10)

Mplrpl < Mpsrrpsr,max, (11)

τ = 5c5r 4
pl

64G3 Mpl Mpsr(Ms + Mpl)
> τ0, (12)

rpl ∈ (106 cm, 109 cm), (13)

Mpsr > 10−4 M�. (14)

If we consider Mpsr � Mpl and substitute for Mpl in the term for rpl

according to equation (2), then the limitations can be derived as

Mpsr >
8kπ2

3P PpreceGε cos θpl

r 3
pl, (15)

Mpsr >
8π2

3P PpreceGε cos θplrpsr,max

r 4
pl, (16)
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Figure 2. Constraint on rpl and Mpsr (by observations and theoretical ar-

guments. The shadowed ‘Available’ region surrounded by Lines (1)–(5) is

the parameter space for rpl and Mpsr. The five lines are defined by equa-

tions (20)–(24). In this figure we use cos θpl = 1, as the locations of Lines

(1)–(3) will not change much with the variation of the average inclination

of the planet orbit θpl from 0◦ to 80◦ (see Table 1).

Mpsr <

(
15P Pprecec5ε

512π2G2τ0 cos θpl

rpl

)1/2

, (17)

106 cm < rpl < 109 cm, (18)

Mpsr > 10−4 M�. (19)

In Fig. 2 we consider the above limitations and figure out the

available range for Mpsr and rpl. Accordingly, point (rpl, Mpsr) should

be above Lines (1) and (2), below Lines (3) and (5) and on the right

of Line (4). Thus we have the shadowed area, named the ‘Available’

area, for point (rpl, Mpsr). Lines (1)–(5) are defined as below

Line (1) : Mpsr = 8kπ2

3P PpreceGε cos θpl

r 3
pl, (20)

Line (2) : Mpsr = 8π2

3P PpreceGε cos θplrpsr,max

r 4
pl, (21)

Line (3) : Mpsr =
(

15P Pprecec5ε

512π2G2τ0 cos θpl

)1/2

r 1/2
pl , (22)

Line (4) : rpl = 106 cm, (23)

Line (5) : Mpsr = 10−4 M�. (24)

From Fig. 2, the available value ranges of rpl, Mpsr and Mpl are

(106 cm, 5 × 107 cos1/7 θpl cm), (10−4 M�, 6 × 10−3 cos−3/7

θ pl M�) and (6 × 10−9 cos−1 θpl M�, 6 × 10−4 cos−4/7 θpl M�),

respectively. Here we use cos θ pl = 1 because the positions of Lines

(1), (2) and (3) do not vary distinctly with the changing of θpl from

0◦ to 80◦. Different value ranges of rpl, Mpsr and Mpl with different

θ pl are shown in Table 1.

3 TO T E S T T H E M O D E L B Y F U RT H E R
O B S E RVAT I O N

The loss of the total energy of the system caused by GRW will lead

to the decay of the planet orbit. Correspondingly, the precession

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 381, L1–L5
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Table 1. The parametric range of rpl, Mpsr and Mpl for different inclination

of planet orbit, θpl. The variation of the range is not significant for θpl from

0◦ to 80◦.

θpl rp Ms Mp

(cm) (M�) (M�)

0◦ (106, 5 × 107) (10−4, 6 × 10−3) (6 × 10−9, 6 × 10−4)

30◦ (106, 5 × 107) (10−4, 6 × 10−3) (7 × 10−9, 7 × 10−4)

60◦ (106, 5 × 107) (10−4, 8 × 10−3) (1 × 10−8, 9 × 10−4)

80◦ (106, 4 × 107) (10−4, 1 × 10−2) (3 × 10−8, 2 × 10−3)

period will be reduced as the orbital radius decreases. Meanwhile,

the planetary system may act as a detectable gravitational wave

source. Therefore, it is possible to test and improve the model by

GWR detection and long-period observation for the precession pe-

riod derivative (Ṗprece).

Thus we next calculate Ṗprece and the characteristic amplitude

of GWR source strength (hc) for different values of rpl and Mpsr,

respectively. From equation (2), if the orbital radius undergoes a

slight change, the variation of Pprece can be expressed as

�Pprece = 8π2r 2
pl

G P Mplε cos θpl

�rpl. (25)

In this case we do not consider the change of spin period (the result

will prove its reasonableness). Similarly, from equation (4) we have

�Etot = G Mpl Mpsr

2r 2
pl

�rpl. (26)

In addition, the slight change of mechanical energy is caused by

GWR in a short period (see equation 3):

�Etot = 32G4 M2
psr M

2
pl(Mpsr + Mpl)

5c5r 5
pl

�t . (27)

Considering Mpsr � Mpl and combining equations (25)–(27) give

the period derivative of precession as below

Ṗprece = �Pprece

�t
= 512π2G2 M2

psr

5c5 Pε cos θplrpl

. (28)

Meanwhile, the rate of loss of angular momentum caused by GWR

is (Ushomirsky, Cutler & Bildsten 2000)

Ngw = Ė

�
= c3�d2h2

a

G
, (29)

where Ė is the rate of loss of the total energy, � =
√

G Mpsr/r 3
pl is

the period of revolution of the planet and d = 3.58 kpc (Taylor &

Cordes 1993) is the distance of the pulsar. ha is the source’s ‘angle-

averaged’ field strength (at Earth) and approximately we have ha

≈ hc (ha ≈ 1.15hc, see Ushomirsky et al. 2000). Combining equa-

tions (2), (3) and (29) gives

ha = 32
√

2π2G

3
√

5dc4 P Ppreceε cos θpl

Mpsrr
2
pl. (30)

Besides, the frequency of GWR is

ν = 2
�

2π
=

√
G Mpsr

π2r 3
pl

. (31)

In Fig. 3, relations between rpl and Mpl from equation (28) for

a group of Ṗprece, from equation (31) for a group of ha and from

equation (32) for a group of ν are shown (cos θpl � 1). The relations

10
5

10
6

10
7

10
8

10

10
5

10
4

10
3

10
2

10
1

Available

dP
prece

/dt=6×10
7

dP
prece

/dt=1×10
5

dP
prece

/dt=4×10
4

h
a
=1×10

30
h

a
=1×10

27

h
a
=3×10

25

ν=1×10
2
Hz ν=10Hz ν=1Hz

r
pl

 (cm)

M
p

s
r (

M
s
u

n
)

Figure 3. A zoomed parameter space for the ‘Available’ region. The pro-

cession period derivative (Ṗprece = dPprece/dt , dash lines), the perturbed

metric (ha, dot lines), and gravitational wave frequency (ν, dash-dot lines)

are drawn. Here we use cos θpl = 1 in the calculations. The available area

gives model-permitted parameter space for Ṗprece, ha and ν.

are limited by the available area for point (rpl, Mpl) from Fig. 1. As

is shown, the maximum and minimum of Ṗprece are 4 × 10−4 and

6 × 10−7 while those of ha are 3 × 10−25 and 1 × 10−30. The result

indicates that the precession period changes much more quickly

than spin period of the pulsar that and the GWR at Earth is not

intense enough to be detected by LIGO at its working frequency.

For example, at a frequency of 10 Hz, the value of ha is about 10−27,

which is below the current detection limit of the LIGO at the same

frequency (about 10−22).

4 C O N C L U S I O N A N D D I S C U S S I O N

Within the framework of forced precession, we propose a quark

planet model to explain the precession of PSR B1828−11. The ob-

served phenomenon can be understood by a pulsar (probably a quark

star) together with a quark planet which mainly provides the preces-

sion torques. In principle, orbital radius of the quark planet should

be between 106 and 108 cm while the mass ranges of the pulsar and

the planet are approximately 10−4–10−1 M� and 10−8–10−3 M�,

respectively. These results might not be surprising, as other candi-

dates of low-mass quark stars were also discussed previously (Xu

2005; Yue et al. 2006). We calculate the model-permitted precession

period derivative and characteristic amplitude of GWR for the sys-

tem. The precession period changes much more quickly than spin

period of the pulsar; meanwhile, GWR strength at Earth may not be

large enough to be detected by the current LIGO.

If there is a quark planet providing torque for the forced precession

of pulsar PSR B1828−11, it should be close to the pulsar with

a distance of several times the pulsar’s radius. The pulsar mass

should also be significantly lower than M�, which may suggest

that the pulsar would be a quark star. Such planets, orbiting closely

to the centre pulsars, could be ejecta during the formation of the

quark stars with strong turbulence if the surface energy is reasonably

low (Xu 2006). Considering the orientation of the system’s angular

momentum, the planet is not likely to have a inclination of orbit very

close to 90◦ and our previous analysis with θpl varying from 0◦ to

90◦ can work effectively.

In this Letter we do not consider the possibility of more than one

planet, which may provide a way to explain the other two possible

precession periods of the pulsar. The limitation on orbital radius and

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 381, L1–L5
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ratio of the pulsar mass to the mass of the planet could be improved

if the formation of the system is considered. However, precession

periods of the pulsar cannot be exactly obtained from the seemingly

periodic post-fit timing residuals now. Long-period timing observa-

tions in the future are necessary in order to obtain more accurate

precession period derivative of the system. Since 2000, the pulsar

has accomplished several precession periods. Therefore, if the pre-

cession period derivative reaches its maximum in this model, the

precession period may have changed by several days. In addition,

we need observations of gravitational waves to test and improve the

model. Whether it can be detected or not will both provide further

limitations on the mass of the pulsar and the orbital radius of the

planet.

The model could also be tested by X-ray observation. (1) If

the pulsar is a solid quark star with Mpsr ∼ 10−3 M� and then

rpsr ∼ 2 km, the rate of rotation energy loss could be only about

105 times smaller than that in the standard model where the pulsar

is a normal neutron star. Assuming that only ∼ 0.1 per cent of the

spin-down power could turn into the non-thermal X-ray luminosity

(Lorimer & Kramer 2005), the flux at earth should be about 1 ×
10−17 erg cm−3 s−1 (less than 1 photon/60 h). (2) The thermal X-ray

emissivity from the pulsar could also be lower. If thermal emission

is from the global star, the flux should be ∼5 × 10−13 erg cm−3 s−1

and ∼3 × 10−14 erg cm−3 s−1 for the pulsar with surface tempera-

tures of 200 eV and 100 eV, respectively. Taking absorption into

consideration, we can expect a flux of ∼10−14 erg cm−3 s−1 (about

70 photons/6 h). However, if the pulsar is a neutron star with radius

10 km and surface temperature > 60 eV,2 the flux is much higher,

>10−13 erg cm−3 s−1. Future observations of the pulsar by Chandra
or XMM–Newton could certainly bring us more details about the

real nature.

Finally, we note that the nature of pulsars (to be neutron or quark

stars) is still a matter of debate even after 40 yr of the discovery.

The reason for this situation is in both theory (the uncertainty of the

non-perturbative nature of strong interaction) and observation (the

difficulty of distinguishing them). It is a non-mainstream idea that

pulsars are actually quark stars, but this possibility cannot be ruled

out yet according to either first principles or observations. ‘Low-

mass’ is a natural and direct consequence if pulsars are quark stars

because quark stars with mass <1 M� are self-confined by colour

interaction rather by gravity. An argument against the low-mass

idea could be the statistical mass-distribution of pulsars in binaries

(∼1.4 M�). However, this objection might not be so strong due to

(Xu 2005): (1) if the kick energy is approximately the same, only

solar-mass pulsars can survive in binaries, as low-mass pulsars may

be ejected by the kick; (2) low-mass bare strange stars might be

uncovered by re-processing the timing data of radio pulsars if the

pulsars’ mass is not conventionally supposed to be ∼1.4 M�. In

2 According to the standard cooling model of Page (1998), the temperature

of this ∼105 yr old pulsar is ∼68 eV.

this work, we just try to understand the peculiar precession nature

of PSR B1828-11 in the quark star scenario, as the mainstream-

scientific solution to precession might not be simple and natural.
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