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The formation of submillisecond pulsars and the possibility of detection
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ABSTRACT
Pulsars have been recognized to be normal neutron stars, but sometimes have been argued
to be quark stars. Submillisecond pulsars, if detected, would play an essential and important
role in distinguishing quark stars from neutron stars. We focus on the formation of such
submillisecond pulsars in this paper. A new approach to the formation of a submillisecond
pulsar (quark star) by means of the accretion-induced collapse (AIC) of a white dwarf is
investigated. Under this AIC process, we found that: (i) almost all newborn quark stars could
have an initial spin period of ∼0.1 ms; (ii) nascent quark stars (even with a low mass) have
a sufficiently high spin-down luminosity and satisfy the conditions for pair production and
sparking process and appear as submillisecond radio pulsars; (iii) in most cases, the times of
newborn quark stars in the phase with spin period <1 (or <0.5) ms are long enough for the
stars to be detected.

As a comparison, an accretion spin-up process (for both neutron and quark stars) is also
investigated. It is found that quark stars formed through the AIC process can have shorter
periods (≤0.5 ms), whereas the periods of neutron stars formed in accretion spin-up processes
must be longer than 0.5 ms. Thus, if a pulsar with a period shorter than 0.5 ms is identified in
the future, it could be a quark star.

Key words: accretion, accretion discs – gravitational waves – stars: Neutron – pulsars:
general.

1 IN T RO D U C T I O N

Although it has been more than 40 years since the discovery of
radio pulsars, their real nature is still not clear, owing to a lack
of knowledge about cold matter at supranuclear densities. Neutron
matter and quark matter are two conjectured states for such compact
objects. Objects consisting of the former are called neutron stars,
and those consisting of the latter are called quark stars. It is an
astrophysical challenge to distinguish real quark stars from neutron
stars observationally (see reviews by, for example, Madsen 1999;
Glendenning 2000; Lattimer & Prakash 2001; Kapoor & Shukre
2001; Weber 2005; Xu 2008). The most obvious discrepancy could
be the minimal spin period of these two distinct kinds of objects.
The minimal periods of these two kinds of objects are related to
their formation process. How fast a neutron star or a quark star
can rotate during the recycling process in low-mass X-ray bina-
ries (LMXBs) has been considered by a number of authors (Bulik,
Gondek-Rosińska & Kluźniak 1999; Blaschke et al. 2002; Zdunik,
Haensel & Gourgoulhon 2002; Xu 2005; Arras 2005). Friedman,
Parker & Ipser (1984) found that neutron stars with the softest
equation of state can have a spin period as short as 0.4 ms. The
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shortest spin period for neutron stars computed by Cook, Shapiro &
Teukolsky (1994) is about 0.6 ms. Frieman & Olinto (1989) showed
that the maximum rotation rate of secularly stable quark stars may
be less than 0.5 ms. Burderi & D’Amico (1997) discussed a possible
evolutionary scenario resulting in a submillisecond pulsar, and the
possibility of detecting a submillisecond pulsar with a fine-tuned
pulsar-search survey. Gourgoulhon et al. (1999) investigated the
maximally rotating configurations of quark stars and showed the
minimal spin period to be between 0.513 and 0.640 ms. Burderi
et al. (1999) predicted that there might exist an as-yet undetected
population of massive submillisecond neutron stars, and the dis-
covery of a submillisecond neutron star would imply a lower limit
for its mass of about 1.7 M�. A detailed investigation of the spin
up of neutron stars to submillisecond periods, including a complete
statistical analysis of the ratio with respect to normal millisecond
pulsars, was performed by Possenti et al. (1999). The minimal recy-
cled period was found to be 0.7 ms. Gondek-Rosińska et al. (2001)
found that the shortest spin period is approximately 0.6 ms through
the maximum orbital frequency of accreting quark stars. Huang &
Wu (2003) found the initial periods of pulsars to be in the range of
0.6 ∼ 2.6 ms using proper motion data. Zheng et al. (2006) showed
that hybrid stars, instead of neutron or quark stars, may lead to sub-
millisecond pulsars. Haensel, Zdunik & Bejger (2008) discussed
the equation of state (EOS) of compact stars and the spin up to a
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submillisecond period by means of mass accretion from a disc in a
LMXB.

There have been many observational attempts to find submillisec-
ond pulsars. A possible discovery of a 0.5-ms pulsar in Supernova
1987A was not verified in follow-up observations (Sasseen 1990;
Percival et al. 1995). Bell et al. (1995) reported on optical ob-
servations of the low-mass binary millisecond pulsar system PSR
J0034-0534 and used white dwarf cooling models to speculate that
the limit magnitude of J0034-0534’s companion suggested that the
initial spin period of this millisecond pulsar was as short as 0.6 ms.
As addressed by D’Amico & Burderi (1999), the detection of a
pulsar with a spin period well below 1 ms could put severe con-
straints on the neutron star structure and the absolute ground state
for baryon matter in nature. They designed an experiment to find
submillisecond pulsars with the Italian Northern Cross radio tele-
scope near Bologna. Edwards, van Straten & Bailes (2001) found
no submillisecond pulsars in a search of 19 globular clusters using
the Parks 64-m radio telescope at 660 MHz with a time resolution
of 25.6 μs. Han et al. (2004) did not find any submillisecond pulsars
in the highly polarized radio source of the NVSS (NRAO VLA Sky
Survey). Kaaret et al. (2007) found oscillations at a frequency of
1122 Hz in an X-ray burst from the transient source XTE J1739-285,
which may contain the most rapidly rotating neutron star discovered
to date. Significant difficulties do exist for the detection of binary
submillisecond pulsars in current radio surveys as a result of strong
Doppler modulation and computational limitations (Burderi et al.
2001).

How do submillisecond pulsars form? This is an open question,
and one that we will explore in this paper. Previously, discussions
concentrated on the formation of neutron stars or quark stars through
a process of spin up by means of accretion in binaries. We consider
a new approach to creating a submillisecond pulsar (quark star) with
super-Keplerian spin through the accretion-induced collapse (AIC)
of a massive white dwarf (WD). The initial spin of the newborn
quark star could be super-Keplerian, and it could have a long life-
time in the submillisecond phase and produce enough strong radio
emission to be detected.

In Section 2 we discuss low-mass quark stars formed from the
AIC of WDs, which can have a minimal initial period of submil-
liseconds. In Section 3, the radiation parameters and the conditions
for pair production are estimated in order to investigate whether
the AIC-induced quark stars could be pulsars or not. The lifetimes
of submillisecond pulsars are also estimated, and the possibility
of detection is discussed. The spin-down evolution diagrams of a
newborn quark star and neutron star are also plotted. In Section 4,
as a comparison, the submillisecond pulsars formed through ac-
cretion acceleration (spin up) in binary systems are considered. In
Section 5, conclusions and discussions are presented.

2 SUBMILLISECOND QUARK STARS FORMED
T H RO U G H TH E A I C O F W D S

The formation of a neutron star from the AIC of a massive WD
has been discussed by many authors (Nomoto et al. 1979; Nomoto
& Kondo 1991; van Paradijs et al. 1997; Fryer et al. 1999; Bravo
& Garcı́a-Senz 1999; Dessart et al. 2006). Recently, it has been
pointed out that the Galactic core-collapse supernova rate cannot
sustain all the neutron star populations (Keane & Kramer 2008),
which implies that other mechanisms for forming neutron stars
must exist. The AIC of a massive WD can be an important mech-
anism for pulsar formation, even for isolated pulsars, if the binary
systems are destroyed by strong kicks. We now discuss the possi-

bility of the formation of a low-mass quark star through the AIC
of a WD. In a binary system, when the WD has accreted enough
matter from its companion that its mass reaches the Chandrasekhar
limit, the process of electron capture may induce gravitational col-
lapse. The detonation waves burn nuclear matter into strange quark
matter, which spreads out from the inner core of the WD (Lugones,
Benvenuto & Vucetich 1994). A boundary of strange quark matter
and nuclear matter will be found at the radius at which the deto-
nation waves stop, when the nuclear matter density drops below a
critical value. A similar process was discussed and calculated by
Chen, Yu & Xu (2007). The size of the inner collapsed core may de-
pend on the chemical composition and accretion history of the WD
(Nomoto & Kondo 1991). Consequently, quark stars with different
masses could be formed.

Both rigidly and differentially rotating WDs are considered. As
a first step, for simplicity, we assume that both the collapsed WD
and the newborn quark star have rigidly rotating configurations.
The WDs, progenitors of these quark stars, could have a uniformly
rotating configuration owing to the effects of crystallization; in
addition, an increase in the central density may lead to catastrophic
evolution (supernova) (Koester 1974). With these assumptions, a
model of the formation of submillisecond pulsars is given below.
The initial spin period of AIC-produced quark stars can be estimated
as follows. We assume that the mass (M�) of the nascent quark star
ranges from 10−3 M� to 1 M�, and that the WD rotates rigidly
at the Kepler period (PK) just before collapse. The rest mass of
the quark star (M�) is approximately equal to the mass (mcore) of
the inner collapsed core of the WD. If the angular momentum is
conserved during AIC, the newborn quark star can rotate at a much
shorter period, Pq, and then

Icore
2π

PK

= Iq
2π

Pq
. (1)

That is to say,

Pq = Iq

Icore
PK, (2)

where Iq is the moment of inertia of the quark star, and Icore is the
moment of inertia of the inner collapsed core of the WD, which can
be well approximated by

Icore � 2

5
McoreR

2
core. (3)

The mass and radius of a low-mass (M� � 1 M�) quark star could
be approximately related by M� = (4/3)π(4β)R3 (Alcock, Farhi
& Olinto 1986) in the bag model. We have an approximate formula
for the moment of inertia of the fast-rotating quark star:

Iq = 2
∫ R

0
dz

∫ √
R2−z2

0

4β2πx3√
1 − 4π2x2

c2P 2
q

dx

= βcPq

16π4

[
6πc3P 3

q R − 8π3cPqR
3 +

(
16π4R4

+ 8π2c2P 2
q R2 − 3c4P 4

q

)
ln

1 + 2πR

cPq√
1 − 4π2R2

c2P 2
q

]
,

(4)

where the z-axis is the spin axis; x is an integral variable of each
disc perpendicular to the spin axis; c is the speed of light; R is the
radius of the quark star; and the bag constant β of quark stars is
60–110 MeV fm−3, that is, (1.07–1.96) × 1014 g cm−3, β14 in units
of 1014 g cm−3.
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Figure 1. The relationship between mass and radius for white dwarfs
(WDs). The red line is the theoretical line. The blue triangles and circles
are observed WD data, taken from table 1 of Należyty & Madej (2004)
and tables 3 and 5 of Provencal et al. (1998), respectively. Among these
data, the WD RE J0317-853 is the most massive WD, with mass and radius
1.34 M� and 2400 km respectively. The square represents a WD with the
Chandrasekhar mass limit.

For the WD, using both the non-relativistic hydrostatic equilib-
rium equation

dp

dr
= −Gm(r)ρ(r)

r2
, (5)

and the general EOS for a completely degenerate Fermi gas,

p = 1

3π2�3

∫ pF

0

c2p4√
c2p2 + m2c4

dp

= 1.42 × 1025φ(x) dyn cm−2,
(6)

where x ≡ pF/mc, λe = �/(mc) is the electron’s Compton wave-
length, PF is the Fermi momentum and

φ(x) = (8π2)−1
{

x(1 + x2)1/2(2x2/3 − 1)

+ ln[x + (1 + x2)1/2]
}

,

we calculate the mass (mcore) and the moment of inertia (Icore) of
the collapsed core of a massive WD, where p, ρ, G and � are the
pressure, the mass density, the gravitational constant and the Planck
constant, respectively.

Using equations (5) and (6), one can undertake a numerical cal-
culation to obtain the theoretical relationship between the mass and
radius of the WD (red line in Fig. 1). For comparison, a similar fig-
ure is presented on the web page.1 Before it collapses, the mass of
a WD is close to the Chandrasekhar mass limit, as high as MWD =
1.4 M� (Shu 1982), and the corresponding radius, RWD = 410 km,

1http://cococubed.asu.edu/code_pages/coldwd.shtml

is much smaller than those of typical observed WDs. If the initial
periods, Pq, of nascent quark stars with different masses are ob-
tained numerically from equation (2), it is found that almost all of
the values of Pq are around ∼0.1 ms (see Table 1) if the WD rotates
rigidly at an almost Kepler period because of accretion (or spin up)
in a binary just before collapse. The surface spin velocities of the
newborn quark stars are well above the Kepler velocities: we term
this the ‘super-Keplerian’ case.

WDs may be rotating differentially, and the detailed calculations
for this case are given in Appendix A. As a follow-up second step,
we therefore also use equations (2), (5), (6) and (A2) to calculate
the initial spin period of the nascent quark stars in the differentially
rotating WD model, taking the free parameter a = 0.5. The results
are shown in Table 1.

A newborn quark star could certainly rotate differentially, and
may relax to become a rigidly rotating configuration finally. How-
ever, the time-scale of the relaxation depends on the viscosity and
on the state of the cold quark matter (Xu 2009). The newborn quark
star’s relaxation (from a differentially rotating configuration to a
rigidly rotating configuration) may be caused by rapid solidifica-
tion after birth. A calculation shows that the solidification time-scale
is only 103–106 s (Xu & Liang 2009). Therefore, the relaxation
time-scale could be much shorter than the lifetime of pulsars with
submillisecond periods (see Section 3.3 below).

The WD RE J0317-853 has the highest observed mass (1.34 M�,
close to the Chandrasekhar limit), with a radius of 2400 km
(Należyty & Madej 2004). If a WD like RE J0317-853 were in
a binary and accreted enough material to reach the Chandrasekhar
limit, it may collapse. We therefore calculated the initial spin peri-
ods P̂q and P̂dif of a nascent quark star under this assumption. The
calculated results are listed in Table 1. It is found that, even if a
WD has a larger radius, such as 2400 km, it can also collapse to a
submillisecond quark star for both rigidly and differentially rotat-
ing WD models. In the differentially rotating WD model, it tends
to give a rigidly rotating configuration in the limit of large values
of a: Pdif increases as the parameter a increases. The conclusions
from the rigid-rotation model are valid even if differential rotation
is included.

Can a quark star survive even if it rotates with such a high fre-
quency (∼104 Hz)? Will it be torn apart by the centrifugal force?
There are a number of features that distinguish neutron and quark
stars. A low-mass quark star can spin at a super-Keplerian frequency
because it is self-bound by the strong interaction. On one hand, as
noted by Qiu & Xu (2006), astrophysical quark matter splitting
could be colour-charged if colour confinement cannot be held ex-
actly because of causality. On the other hand, however, rapidly
spinning quark matter is unlikely to split if colour confinement is
held exactly. In addition, the recently discovered nature of strongly
coupled quark gluon plasma (sQGP) as realized at the Relativistic
Heavy Ion Collider (RHIC) experiment (e.g. Shuryak 2006) may
also prevent a super-Keplerian quark star from splitting.

The short spin period above is not surprising, and could be ver-
ified for a simplified special case, if both the density of the quark
star (=4β) and the density of the WD (=ρc) are uniform. Using
equation (2) and the mass–radius relationship, we find the initial
period of the quark star to be P q = (ρc/4β)2/3 P WD ∼ 4 × 10−3

(ρ11/β14)2/3P WD (with PWD the spin period of the WD, ρ11 =
ρc/1011 g cm3, β14 = β/1014 g cm3), which depends only on the
densities of the WD and the quark star.

If the WD has not been spun up fully to the Kepler period; that is,
if the WD rotates at a sub-Keplerian period (e.g. several times PK)
before AIC, can the initial period of a newborn quark star formed
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Table 1. The minimal initial period (Pq) and lifetimes (τ ) considering the gravitational wave and electromag-
netic radiation in the submillisecond-period phase for quark stars with various masses in the super-Keplerian
case. Pq and Pdif are calculated from angular momentum conservation using a rigidly and differentially

rotating white dwarf (WD) model with a central density of 1011 g cm−3. P̂q and P̂dif are similarly calculated,
but using a WD like RE J0317-853 with a mass of 1.4 M� and a radius of 2400 km. τ 1 is the time the quark
star spends in the phase with period <1 ms, whereas τ 2 is the time spent in the phase with period <0.5 ms.
Pq is also used in Tables 2 and 3 and Fig. 2. β is the bag constant and εe is the gravitational ellipticity.

Mass Radius (km) Pq(ms) Pdif (ms) P̂q(ms) P̂dif (ms)
(M�) β = 60 MeV fm−3 β = 60 MeV fm−3 a = 0.5 β = 60 MeV fm−3 a = 0.5

0.001 1.04 0.0699 0.0261 0.0481 0.0252
0.01 2.24 0.0751 0.0472 0.0512 0.0470
0.1 4.81 0.104 0.101 0.102 0.101
1 10.37 0.221 0.218 0.218 0.218

Mass(M�) Pq(ms) τ 1(yr) τ 2(yr)
εe = 10−6 εe = 10−9 εe = 10−6 εe = 10−9

0.001 0.0699 3.4 × 107 4.5 × 1010 2.1 × 106 1.1 × 1010

0.01 0.0751 7.3 × 105 2.0 × 1010 4.5 × 104 4.3 × 109

0.1 0.104 1.6 × 104 5.4 × 109 9.0 × 102 6.5 × 108

1 0.221 3.4 × 102 3.1 × 108 2.2 × 101 2.0 × 107

from such a WD be submillisecond? We investigated the case of a
massive WD (1.4 M�, 410 km) rotating at a period P WD = 5P K ∼
600 ms. The initial spin period of quark stars with various masses are
as follows: P̂q ∼ 0.11 ms for a quark star with a mass of 0.001 M�;
∼0.24 ms for 0.01 M�; 0.35 ms for 0.1 M� and ∼0.36 ms for
1 M�. The spin-down feature of such a newborn quark star depends
on its gravitational wave radiation and magnetodipole radiation (for
details see Section 3).

3 R A D I AT I O N O F SU B M I L L I S E C O N D QUA R K
STARS WITH LOW MASSES

The mass of most submillisecond quark stars formed from the AIC
of WDs is so low that we need to ask whether the quark star can
produce radiation luminous enough to be observed as millisecond
pulsars. The answer is related to two factors. First of all, is the
rotational-energy-loss rate high enough to power the electromag-
netic radiation as normal pulsars? Second, is the potential drop in
the inner gap high enough for pair production and sparking to take
place in the inner gap? These are necessary conditions for radio
emission from pulsars.

3.1 The spin-down power of submillisecond pulsars

Normal radio pulsars are rotation-powered, and the radiation en-
ergy comes from the rotational energy loss. Here we first neglect
gravitational wave radiation, and thus the rate, Ėrot, is

Ėrot = 8π4R6B2P −4

3c3
. (7)

Comparing the rotational-energy-loss rate (Ėrot,q) of quark stars
with that of normal neutron stars (Ėrot,NS), one has

Ėrot,q/Ėrot,NS = R6
qB

2
q P −4

q

R6
NSB

2
NSP

−4
NS

. (8)

If we take normal parameters, such as the surface magnetic field
of the polar cap Bq = 108 G, BNS = 1012 G, the rotational period
P q = 0.1 ms and P NS = 1 s, the result is Ėrot,q/Ėrot,NS = 102 even

for a quark star with a mass of 0.001 M�. This means that the quark
stars have enough rotational energy to radiate, at hundred times the
rate of normal pulsars, even when the mass is so low.

3.2 Particle acceleration for submillisecond pulsars

In most radio-emission models of pulsars, such as the RS model
(Ruderman & Sutherland 1975, hereafter RS75), the inverse Comp-
ton scattering (ICS) model (Qiao & Lin 1998), the multi-ring spark-
ing model (Gil & Sendyk 2000), the annular gap model (Qiao et al.
2004) and so on, the potential drop in the inner gap must be high
enough that the pair production condition can be satisfied.

In the inner vacuum gap model, there is a strong electric field
parallel to the magnetic field lines resulting from the homopolar
generator effect. The particles produced through the γ − B process
in the gap can be accelerated to ultra-relativistic energies (i.e. the
Lorentz factor can be 106 for normal pulsars). The potential across
the gap is (RS75)

	V = 
B

c
h2, (9)

where 
 is the angular frequency of the pulsar; h is the gap height;
and B and c represent the magnetic field at the surface of the neu-
tron star and the speed of light, respectively. As h increases and
approaches the radius of the polar cap, rp, the potential drop along
a field line traversing the gap, cannot be expressed by equation (9)
above. In this case the potential can reach a maximum value

	Vmax = 
B

2c
r2

p . (10)

Let us make an estimate about the quark star’s potential drop
	V q in the polar gap region:

	Vq = 
Bq

2c
r2

p,q, (11)

where 
= 2π/P q and rp,q =Rq(2πRq/cP q)1/2. For normal neutron
stars, 	V can be obtained just by changing the subscript q to NS.
Thus

	Vq

	VNS
= BqR

3
qP

−2
q

BNSR
3
NSP

−2
NS

. (12)
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Taking Rq = 1 km for a quark star with a mass of 0.001 M�,
Bq = 108 G, BNS = 1012 G, RNS = 10 km, P q = 0.1 ms and
P NS = 1 s, we find that 	V q/	V NS = 10. This means that quark
stars can have large enough potential drops in the polar cap regions.

In the inner gap model, the γ –B process plays a very important
role, and two conditions should be satisfied at the same time for
pair production: (1) to produce high-energy γ -ray photons, a high
enough potential drop should be reached; (2) for pair production, the
energy component of γ -ray photons perpendicular to the magnetic
field must satisfy Eγ,⊥ ≥ 2mec

2 (Zhang & Qiao 1998).
Particles produced in the gap can be accelerated by the electric

field in the gap, and the Lorentz factor of the particles can be written
as

γ = e 	 V

mec2
, (13)

where γ is the Lorentz factor of the particles accelerated by the
potential 	V , me is the mass of an electron or positron, and e is the
charge of an electron.

In the γ – B process, the conditions for pair production are that
the mean free path of a γ -ray photon in the strong magnetic field
should be equal to the gap height, l ≈ h. The mean free path of a
γ -ray photon is given by

l = 4.4

e2/�c

�

mec

Bc

B⊥
exp

(
4

3χ

)
(14)

(Erber 1966), where Bc = 4.414 × 1013 G is the critical magnetic
field, � is Planck’s constant,

χ = Eγ

2mec2
sin θ

B

Bc
= Eγ

2mec2

B⊥
Bc

, (15)

and B⊥ is the magnetic field perpendicular to the moving direction
of γ photons, which can be expressed as (RS75)

B⊥ ≈ h

ρ
B ≈ l

ρ
B. (16)

Here l ≈ h is the condition for sparks (pair production) to take
place. ρ is the radius of curvature of the magnetic field lines. For a
dipole magnetic configuration, it is

ρ ≈ 4

3
(λRc/
)1/2 (17)

(Zhang et al. 1997a), where λ is a parameter used to describe the field
lines, λ = 1 corresponding to the last opening field line. Gamma-ray
energy from the curvature radiation process can be written as

Eγ,CR = �
3γ 3c

2ρ
. (18)

We estimated the gap heights based on Zhang, Qiao & Han (1997b);
that is,

hCR � 106P 3/7B
−4/7
8 ρ

2/7
6 cm. (19)

When the relevant parameters used are B = 108 G, P = P q, and
assuming a dipole magnetic configuration, for any mass of quark
stars, one can estimate the gap height from the curvature radiation
(CR): hCR ≈ 104 cm = 100 m. This means that, even without the
multipolar magnetic field assumption, the quark star can still fulfil
the conditions for CR pair production.

There are three gap modes for pair production, namely the res-
onant ICS mode, the thermal-peak ICS mode and the CR mode
(Zhang et al. 1997a). Each mode has its corresponding gap parame-
ters, including the gap potential drop V and the mean free path l of
the γ – B process. We estimated gap heights and other parameters
based on the work of Zhang et al. (1997b), as shown in Table 2.

It can be seen from Table 2 that when the high-energy gamma-ray
photons come from resonant photon production, the height of the
gap is greater. For the thermal-peak ICS mode, it is one order of
magnitude lower than for the CR mode, and two orders of magnitude
lower than for the resonant ICS mode. This means that, in most
cases, the thermal-peak ICS-induced pair production dominates in
the gap.

The newborn submillisecond quark stars have high enough spin-
down luminosities and gap potential drops (see Table 2) that they
can emit radio or γ -ray photons with high enough luminosities to
be detected by new facilities such as FAST and Fermi (formerly
GLAST).

3.3 Lifetimes of submillisecond pulsars
in the short-spin-period phase

Submillisecond pulsars may be very rare, or the time that such
a pulsar stays in the short-period phase (<1 ms) may not be very
long owing to magnetodipole (EM) radiation and gravitational wave
(GW) radiation (Andersson 2003). The lowest-order GW radiation
is bar-mode, which is caused by non-axisymmetric quadrupole mo-
ment. Here we consider GW radiation in the bar mode, which exerts
a larger braking torque with braking index n ≈ 5 than does mag-
netodipole radiation (n = 3). The rotation frequency drops quickly
owing to GW radiation and EM radiation:

−I

̇ = 32GI 2ε2
e


6

5c5
+ B2

0 R6
4

6c3
, (20)

where c is the speed of light, εe = a/ā is the gravitational ellip-
ticity (equatorial ellipticity), a is the difference in equatorial radii
and ā is the mean equatorial radius.

To simplify equation (20), we introduce the notation A =
32GIε2

e/(5c5) and D = B2
0R

6/(6Ic3), and integrate the equation in
the angular velocity domain [
i = 2π/P i, 
0 = 2π/0.001]. Then

τ = 1

2D

(
1


2
0

− 1


2
i

)
− A

2D2
ln

1

2

0
+ A

D

1

2

i

+ A

D

. (21)

An accurate ellipticity of quark stars is unfortunately unavail-
able. Nevertheless, let us estimate εe to calculate the times in the
submillisecond-period phase for GW and EM radiations. Cutler
& Thorne (2002) suggested εe = (I − I 0)/I 0 ≤ 10−6. Regim-
bau & de Freitas Pacheco (2003) found from their simulations that
εe = 10−6 is the critical value to have at least one detection with
first-generation interferometers (LIGO or VIRGO). It was shown
that the direct upper limit was εe � 1.8 × 10−4 on GW emission
from the Crab pulsar using data from the first 9 months of the
fifth science run of LIGO (Abbott et al. 2008). In addition, Owen
(2005) showed that the maximum ellipticity of solid quark stars was
εe,max = 6 × 10−4. From the on-line catalogue hosted by
ATNF,2 the seventh fastest rotating millisecond pulsar is PSR
J0034-0534, which has a very low period derivative Ṗ ∼ 4.96 ×
10−21 s s−1. We thus use such a low Ṗ and equation (20) to con-
strain the lower limit of the ellipticity of submillisecond pulsars, to
εe,min ∼ 10−9 if the stellar mass is of the order of one solar mass. In
order to facilitate a comparison of the lifetimes of quark stars and
neutron stars (τ ) in the submillisecond-period phase, we use mean
equatorial ellipticities εe = 10−6 and εe = 10−9 to calculate τ for
both quark stars and neutron stars through equation (21).

2http://www. atnf.csiro.au/research/pulsar/catalogue/ (Manchester et al.
2005)
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Table 2. Gap parameters estimated for submillisecond quark stars. Ėrot is the spin-down luminosity; hCR is the
curvature radiation (CR) gap height; V CR is the potential drop of the CR gap; hres is the height of the resonant ICS
gap; V res is the potential drop of the resonant ICS gap; hth is the thermal ICS gap height; and V th is the potential
drop of the thermal ICS gap.

M (M�) Ėrot(erg s−1) hCR(cm) V CR(V) hres(cm) V res(V) hth(cm) V th(V)

0.001 4.99 × 1036 1.16 × 104 2.84 × 1010 3.13 × 105 2.05 × 1013 1.18 × 103 2.93 × 108

0.01 3.75 × 1038 1.34 × 104 3.76 × 1010 3.64 × 105 2.78 × 1013 1.31 × 103 3.62 × 108

0.1 1.02 × 1040 1.72 × 104 6.19 × 1010 4.61 × 105 4.46 × 1013 1.62 × 103 5.47 × 108

1 5.00 × 1040 2.65 × 104 1.47 × 1011 6.74 × 105 9.52 × 1013 2.36 × 103 1.16 × 109

In the case of εe = 10−6, if we make the hypothesis that the
rotational energy is lost because of EM radiation, then it can easily
be derived that τEM = 1/(2D)(1/
2

0 − 1/
2
i ) ∼ 5.9 × 109 yr for

a typical compact star with B0 ∼ 108 G and M = M�. If, on the
other hand, we suppose that the rotational energy is lost because of
GW radiation, then τGW = 1/(4A)(1/
4

0 − 1/
4
i ) ∼ 102 yr for a

typical compact star. The energy-loss rates of GW and EM radiation
in the submillisecond-period phase, for a typical compact star that
has a low magnetic field (108–109 G) either from AIC (Xu 2005) or
spin up, are ĖGW = 32GI 2ε2

e

6/(5c5) = 7.0×1041P −6

ms erg s−1 and
ĖEM = B2

0 R6
4/(6c3) = 9.6×1034P −4
ms B2

8 R6
6 erg s−1, respectively.

Even if a quark star with 1 M� formed from the AIC of a WD
has a high magnetic field such as 1012 G, the lifetime τ in the
submillisecond phase is 37 yr, in comparison with τ = 336 yr for
B0 = 108 G. Then the EM energy loss is similar to the GW energy
loss and becomes very important for B0 = 1012 G. For B0 in the
range from 108 G to 1011 G, it is always the case that ĖGW  ĖEM

for compact stars with short spin periods (<1 ms). Therefore, in
the case of larger ellipticity (e.g. εe = 10−6), it is clear that GW
radiation dominates the energy loss in the short-period phase for
both recycled and AIC compact stars with low magnetic fields. The
corresponding lifetime is shorter for a compact star with higher
mass (∼M�), but longer for a star with lower mass (∼0.001 M�).
However, if the ellipticity is lower, for example εe = 10−9, EM
radiation dominates the rotational energy loss. The corresponding
lifetime of a quark star (even with a high mass ∼M�) is long enough
for us to detect it. Fig. 2 shows the relationship between lifetime (in
the phase of <1 ms) and gravitation ellipticity εe for quark stars.

For the super-Keplerian case, the times in the phase of <0.5 ms
for quark stars with various masses are calculated and listed in
Table 1 (see τ 2). For a high-mass quark star with larger ellipticity,
the time is too short for real detection, but the time is >104 yr for
a low-mass quark star. Therefore, low-mass quark stars with εe ∼
10−6 could have much longer lifetimes in the phase of <0.5 ms. For
a high-mass quark star with lower ellipticity, its lifetime is also very
long in the phase of <0.5 ms. If a pulsar with spin period <0.5 ms
is ever found, quark stars will be physically identified.

3.4 Spin-down rate Ṗ for newborn quark and neutron stars

We also use equation (20) to calculate the period derivative (Ṗ ) for
the nascent submillisecond quark stars and neutron stars.

Fig. 3 is a Ṗ –P diagram that shows the spin-down evolution for
quark stars with various masses. It is found that there are different
properties for different ellipticities. For high ellipticities such as
εe = 10−5, Ṗ can change by about 10 orders of magnitude for
different periods (see the steep slopes of the dot–dashed lines and
dashed lines). The rotational energy losses in this case are dominated
by the GW radiation. For a low ellipticity such as εe = 10−9, in most

Figure 2. The relatioship between lifetime (in the phase with period <1 ms)
and gravitational ellipticity εe for quark stars with masses of 0.001 M�
(solid line), 0.01 M� (dot–dashed line), 0.1 M� (dashed line), magnetic
field B = 108 G and the bag constant β = 60 MeV fm−3. The lifetime in
the submillisecond-period phase is shorter if the mass of the quark star is
higher.

cases the rotational energy losses are dominated by magnetic dipole
(EM) radiation, and Ṗ changes relatively slowly with period (solid
lines).

As a comparison, we also calculate the period derivative (Ṗ ) of
a neutron star (with an initial period 0.5 ms, mass of 1.4 M� and
radius of 106 km). The results are shown in Fig. 4. It can be seen
that Ṗ changes with period by as much as 10 orders of magnitude.
It is found that the neutron star spins down much more quickly
than low-mass quark stars, because of the neutron star’s high mass
(∼M�), leading to a higher efficiency of GW radiation.
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Figure 3. Spin-down evolution of quark stars owing to GW and EM radia-
tion (period derivative versus spin period), for masses of 0.1 M�, 0.01 M�
and 0.001 M�. We choose the ellipticity to be 10−5 (dot–dashed lines),
10−7 (dashed lines) and 10−9 (solid lines) in the calculation. It is evident
that GW radiation dominates for quark stars with higher εe, whereas EM
radiation dominates for lower εe.

4 SUBMILLISECOND PULSARS FORMED
T H RO U G H AC C R E T I O N IN B I NA RY SY S T E M S

There is also the important mechanism of ‘spin up in binaries’ for
submillisecond pulsar formation, which is widely discussed in the

Figure 4. Period derivative versus spin period for a neutron star with an
initial period of 0.5 ms, mass of 1.4 M� and radius of 106 km. The neutron
star spins down quickly because of high mass (implying moment of inertia)
for GW radiation.

literature. We regard this as the ‘sub-Keplerian case’ and make a
comparison with our proposed AIC model ‘super-Keplerian case’.
In this section, we will find the minimal periods for both neutron
stars and bare quark stars spun up by accretion in binary systems.
We assume that the initial rotational periods of newborn pulsars
have an ‘equilibrium period’ with two characteristic parameters:
the magnetospheric radius and the corotation radius. The magne-
tospheric radius (rm) is the radius at which the ram pressure of
particles is equal to the local magnetic pressure; that is,

rm = φRA = φ

(
4μ2

mM3/2

Ṁ
√

2G

)2/7

= φ

(
B2

0 R6

Ṁ
√

2GM

)2/7

=
{

3.24 × 108φB
4/7
12 M

−1/7
1 R

12/7
6 Ṁ

−2/7
17 cm,

1.857 × 106φB
4/7
8 M

3/7
1 β

−4/7
14 Ṁ

−2/7
17 cm,

(22)

where μm is the magnetic moment per unit mass of the compact
star, B8 is the surface magnetic strength in units of 108 G, Ṁ17 is the
accretion rate in units of 1017 g s−1 and φ is the ratio between the
magnetospheric radius and the Alfvén radius (Wang 1997; Burderi
& King 1998). Wang (1997) studied the torque exerted on an oblique
rotator and pointed out that φ decreased from 1.35 to 0.65 as the
inclination angle increased from 0◦ to 90◦. Here we take φ ∼ 1 (the
influence of φ is discussed in Section 6).
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Table 3. The minimal equilibrium period for quark stars and lifetimes due to GW and EM radiation in the submillisecond-
period phase for quark stars with various masses (10−3 M�, 0.1 M�, 1.4 M�) in the sub-Keplerian case. τ 1, τ 2, τ 3 are
calculated using εe = 10−6, and τ̃1, τ̃2, τ̃3 are calculated using εe = 10−9. The bag constant β is in units of Mev fm−3 and
the accretion ratio α is in units of the Eddington accretion rate ṀEdd.

β α B0(108 G) Peqmin(ms) τ1(yr) τ̃1(yr) τ2(yr) τ̃2(yr) τ3(yr) τ̃3(yr)

60 0.71 1.1 0.613 2.9 × 107 2.8 × 1010 1.3 × 104 4.1 × 109 1.7 × 102 1.5 × 108

110 0.85 1.4 0.453 5.1 × 107 3.6 × 1010 2.3 × 104 5.6 × 109 2.3 × 102 2.6 × 108

Table 4. The minimal equilibrium period and lifetimes for GW and EM radiation in the submillisecond-
period phase for various equations of state of normal neutron stars in the sub-Keplerian case. The mass and
radius data for neutron stars were obtained from fig. 2 of Lattimer & Prakash (2004). τ and τ̃ are times spent
with a submillisecond period for neutron stars with εe = 10−6 and εe = 10−9, respectively.

EOS Peqmin(ms) Mass (M�) Radius (km) B0(108 G) Ṁ(1017 g s−1) τ (yr) τ̃ (yr)

AP4 0.55 2.21 10 2 6.36 103 1.02 × 108

GS1 0.52 1.38 8.27 2 5 255 2.37 × 108

PAL6 0.60 1.48 9.24 2 6.38 177 1.65 × 108

MS0 0.76 2.76 13.31 1 2.91 35 3.48 × 107

GM3 0.75 1.56 10.93 2 9.47 94 8.54 × 107

MS1 0.76 1.81 11.67 1 2.58 90 6.83 × 107

When rm is very close to the radius of the compact star, we can
rewrite the accretion rate Ṁ in units of the Eddington accretion rate
(ṀEdd), with a ratio, α, so that

Ṁ = αṀEdd = α
4πcmpR

σT

= 1.0 × 1018αM
1/3
1 β−1/3 g s−1. (23)

With these equations obtained above, we can obtain rm for quark
stars:

rm = 9.6α−2/7B
4/7
8 M

1/3
1 β

−10/21
14 km. (24)

The corotation radius is rc = 1.5 × 108M
1/3
1 P 2/3 cm. The spin

periods of compact stars cannot exceed the Kepler limit through
accretion. When the compact star is spun up to the Kepler limit
by the accreted matter falling onto the surface of the compact star,
one can, for neutron stars, use the simple empirical relation for the
maximum spin frequency as the equatorial radius expands:


max = 7700M
1/2
1 R

−3/2
6 s−1 (25)

(Haensel & Zdunik 1989; Lattimer & Prakash 2004), which leads
to

Peq � 0.816M
−1/2
1 R

3/2
6 ms, (26)

where M and R refer to the mass and radius of the neutron star in
non-rotating configurations.

For quark stars, Gourgoulhon et al. (1999) used a highly pre-
cise numerical code for the 2D calculations, and found that 
max

could be expressed as 
max = 9920
√

β60 rad s−1, where β60 =
β/(60 MeV fm−3), which implies that P eq � 0.633β

−1/2
14 ms. These

are the so-called ‘sub-Keplerian’ conditions.
The accretion torque, N, exerted on the compact star is made up

of two contributions: one is the positive material torque, which is
carried by the material falling onto the star’s surface; the other is the
magnetic torque, which can be positive or negative, depending on
the fastness parameter ωs = 
�/
K = (rm/rc)3/2. It is suggested
that the torques may cancel one another if the fastness parameter is
ωs = (rm/rc)3/2 ≈ 0.884 (Dai & Li 2006). This implies a magneto-
spheric radius of rm = 0.92 rc ≈ rc. An equilibrium period of Peq

can be obtained when setting rm = rc:

Peq =
{ 0.512B

6/7
8 β

−5/7
14 α−3/7 ms, (27a)

3170B
6/7
12 M

−5/7
1 R

18/7
6 Ṁ

−3/7
17 ms. (27b)

For quark stars, the equilibrium period is independent of mass
and radius, and is dependent only on the bag constant, the sur-
face magnetic field and the accretion rate. Take B0 in the range
[108 G, 1012 G]: equation (27a) can be used to calculate the min-
imal equilibrium period for different EOSs for quark stars. For
β = 60 MeV fm−3, when α = 0.71, B8 = 1.1, the minimal period
is 0.613 ms. For β = 110 MeV fm−3, when α = 0.85, B8 = 1.4, the
minimal period is 0.453 ms. (See the results in Table 3.)

For neutron stars, the data for the mass and radius for different
EOSs were taken from Lattimer & Prakash (2004, their fig. 2) and
B0 is in the range [108 G, 1012 G]. The minimal equilibrium period
is calculated using equation (27b). (See the results in Table 4.)

In the sub-Keplerian case, the times spent in the submillisecond
phase for quark stars of different masses and for neutron stars with
different EOSs are listed in Tables 3 and 4, respectively. For typical
quark stars as well as for neutron stars with high εe, their lifetimes
in the submillisecond-period phase are about 102 yr, which results
in a detection possibility that is too low. However, for low εe, the
lifetime of a submillisecond pulsar (even with a high mass) is long
enough for it to be detected.

5 C O N C L U S I O N S A N D D I S C U S S I O N S

We have shown that, if a submillisecond pulsar is ever found, it
could be a quark star, based on plausible scenarios for its origin,
the energy available for radiation and its lifetime. A new possible
way to form submillisecond pulsars (quark stars) through the AIC
of WDs has been discussed in this paper. In the super-Keplerian
case, we derived the initial period Pq through angular momentum
conservation, taking into account special and general relativistic ef-
fects, and calculated the lifetime and gap parameters of a newborn
quark star. Quark stars with different masses could have minimal
rotational periods of about 0.1 ms. In most cases, quark stars would
be bare (Xu 2002), and therefore a vacuum gap would be formed in
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the polar cap region. Based on our rough estimations, without con-
sidering the effect of frame dragging (Harding & Muslimov 1998),
we found that the basic parameters (including rotational energy loss)
in the gap are suitable for pair (electrons and positrons) production
and sparking. These stars can be detected as submillisecond radio
pulsars.

We also used an approximate formula to calculate the moment of
inertia of the nascent quark star, but there are currently no accurate
solutions for the configuration of rapidly rotating compact stars.
This should be investigated in the future. In the calculation of WD
mass and radius, we considered only the non-rotating configuration,
but this does not change the conclusions of this paper. If the central
density ρc of the WD is lower than 1011 g cm−3 before collapse,
the resulting WD has a larger radius and moment of inertia; con-
sequently, the newborn quark star could have a shorter spin period
(<1 ms).

Both special and general relativistic effects are weak for a low-
mass (e.g. Jupiter-like) quark star with a small radius. The rotational
energy is lost through GW and EM radiation. The GW radiation
dominates the rotational energy loss in the submillisecond-period
phase, if the magnetic field of the star is not too large. Such quark
stars therefore have a long time (several million years if the mass
∼10−3 M�) with submillisecond spin periods. We have considered
the bar mode of GW radiation in this paper, although other GW
modes (e.g. the r-mode) that have not been considered here may
be important (Xu 2006). The subsequent relaxation time-scale of
a newborn quark star to a rigidly rotating configuration could be
negligible, as a quark star may solidify soon after birth.

An important constraint for the detection of submillisecond pul-
sars is the lifetime in the phase of <1 ms due to GW and EM ra-
diation. A possible method is proposed to constrain the lower limit
of the pulsars’ equatorial ellipticity (i.e. εe,min ∼ 10−9), by evalu-
ating the millisecond-pulsar period derivative from equation (20).
For larger ellipticity, for example εe = 10−6, it is clear that GW
radiation dominates the energy loss in the short-period phase for
both recycled and AIC compact stars. The corresponding lifetime
is shorter for a compact star with a higher mass (∼M�), but longer
for a star with a lower mass (∼0.001 M�). However, if the ellip-
ticity is lower, for example εe = 10−9, EM radiation dominates
the rotational energy loss. The corresponding lifetime of a quark
star (even with a high mass ∼ M�) is long enough, and there are
no lifetime constraints for the detection of submillisecond pulsars.
Solid evidence of the existence of quark stars will be obtained if a
pulsar with a period of less than ∼0.5 ms is discovered.

In the sub-Keplerian case, neutron and ‘bare’ quark stars can be
spun up to submillisecond periods (even ∼0.5 ms) through accretion
in binary systems. When neutron stars are spun up to the Kepler
limit, the minimal equilibrium periods depend only on the mass and
radius of the non-rotating configurations. The minimal equilibrium
periods of quark stars depend on the bag constant.
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APPENDIX A : D IFFERENTIALLY ROTATI NG
W D M O D E L

The WD could be rotating differentially. As stated by Mueller &
Eriguchi (1985), the WD’s angular velocity 
 is a function of the

distance from the rotation axis ω̃. The angular momentum distribu-
tion (the so-called rotation law) is


(̃r) = 
c
(aRe)2

(aRe)2 + r̃2
, (A1)

where 
c is the central angular velocity, Re is the equatorial radius,
and a is a free parameter. When differential rotation is taken into
account, we can numerically evaluate the angular momentum of the
inner collapsed core of the WD as

Jcore =
∑

i

Ji =
∑

i

∫ π

0
σ2πr4

i sin3 θ
(ri sin θ )dθ

=
∑

i

⎡⎢⎢⎣mcore
ca
2R2

WD

r2
i

×

⎛⎜⎜⎝r2
i − 0.5

√
r2
i

a2R2
WD + r2

i

a2R2
WD ln

1 +
√

r2
i

a2R2
WD+r2

i

1 −
√

r2
i

a2R2
WD+r2

i

⎞⎟⎟⎠
⎤⎥⎥⎦,

(A2)

where J i is the angular momentum of each spherical shell with
integral radius r i.
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