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Abstract

Magnetars are a class of highly magnetized, slowly rotating neutron stars, only a small fraction of which exhibit
radio emission. We propose that the coherent radio curvature emission is generated by net charge fluctuations from
a twist-current-carrying bundle (the j-bundle) in the scenario of magnetar-quake. Two-photon pair production is
triggered, which requires a threshold voltage not too much higher than 109 V in the current-carrying bundle, and
which can be regarded as the “open field lines” of a magnetar. Continued untwisting of the magnetosphere
maintains change fluctuations, and hence coherent radio emission, in the progressively shrinking j-bundle, which
lasts for years until the radio beam is too small to be detected. The modeled peak flux of radio emission and the flat
spectrum are generally consistent with the observations. We show that this time-dependent, conal-beam, radiative
model can interpret the variable radio pulsation behaviors and the evolution of the X-ray hot spot of the radio-
transient magnetar XTE J1810−197 and the high-B pulsar/anomalous X-ray pulsar PSR J1622−4950. Radio
emission with luminosity of  -10 erg s31 1 and high-frequency oscillations are expected to be detected for a
magnetar after an X-ray outburst. Differences of radio emission between magnetars and ordinary pulsars are
discussed.

Key words: pulsars: general – radiation mechanisms: non-thermal – radio continuum: general – stars: neutron

1. Introduction

Magnetars are highly magnetized and slowly rotating
neutron stars (NSs), which are historically identified as two
related classes, anomalous X-ray pulsars (AXPs) and soft
gamma-ray repeaters (see Kaspi & Beloborodov 2017 for a
review). They exhibit dramatically variable X-ray and γ-ray
emissions including short bursts, large outbursts, giant flares,
and quasi-periodic oscillations, which are believed to be
powered by the dissipation of their enormous internal magnetic
fields, typically –10 1014 16 G (Duncan & Thompson 1992).
Even their “persistent” emission is far from being steady.
Magnetars are often accompanied by glitches that show
irregular spin-down evolutions (e.g., Kaspi et al. 2000; Dib
et al. 2008; Şaşmaz Muş et al. 2014). These behaviors may be
related to the origin of magnetar bursts.

The leading scenario of magnetar bursts invokes quakes in
the NS crust. Within such a scenario, when the pressure
induced by the internal magnetic field exceeds a threshold
stress, the magnetic energy releases from the crust into the
magnetosphere (Thompson & Duncan 2001), leading to
particle acceleration and a short burst of radiation (Thompson
& Duncan 1995). It is then expected that the magnetar bursts
may exhibit characteristics of self-organized criticality, as has
been observed in earthquakes (Aschwanden 2011; e.g., Cheng
et al. 1996; Duncan 1998; Göğüş et al. 1999).

There have been many attempts to detect radio pulsations from
magnetars (e.g., Gaensler et al. 2001; Burgay et al. 2006).
However, among the known 23 magnetars, only four have been
identified as pulsed radio emitters, with the addition of one more
high-B pulsar, PSR J1119−6127, which might be a magnetar
(Olausen & Kaspi 2014 for a review, Archibald et al. 2016;

Göğüş et al. 2016). The radio emission mechanism of magnetars
seems to be different from that of ordinary pulsars. For instance,
AXP XTE J1810−197 was a switched-on radio-transient during
2003–2009. The radio emission appeared following an X-ray
outburst, and then decayed with the X-ray emission abating
(Camilo et al. 2016). 1E 1547.0−5408, another AXP, was also
identified as a switched-on radio-transient intermittently follow-
ing its 2009 outburst (Burgay et al. 2009). Their radio emission
differs from that of ordinary rotation-powered pulsars by having
extremely variable flux densities, flatter spectra, and pulse
profiles (e.g., Camilo et al. 2007c; Lazaridis et al. 2008). Similar
distinct characteristics are also found in other radio magnetars
(Camilo et al. 2007b; Levin et al. 2010; Shannon & Johnston
2013). The correlation between the radio and X-ray emission
indicates that the radio emission is likely powered by quake-
triggered currents in the magnetosphere rather than by the steady
spindown power.
The coherent radio emission mechanism for radio pulsars is

poorly understood due to their high brightness temperatures.
That for magnetars is even more so thanks to their peculiar
environment and the different observational properties from the
ordinary pulsars. It was proposed that the coherent radio
counterparts of the X-ray bursts from the magnetars have fluxes
as high as 1 kJy, which is reminiscent of the solar type III radio
bursts (Lyutikov 2002, 2006). However, such a predicted radio
flux is much higher than the observed peak fluxes for some
radio transients (e.g., Camilo et al. 2016). Alternatively, Lin
et al. (2015) argued that stellar oscillations can provide
additional voltage in the polar cap region, making a “magnetar”
reactive by crossing the pulsar radio emission death line. If the
radio emission is originated from the oscillation-induced
unipolar induction from the open field line regions, the number
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of observed radio magnetars would be small because of the
narrow open field beam size of slow rotators.

In this paper, a coherent curvature radiative model of
magnetar-quake-induced net charge fluctuation in the twist-
current-carrying bundle is proposed to explain the radio
emission of magnetars. The paper is organized as follows.
An introductory description of the magnetar-quake-induced,
twisted, and oscillating magnetosphere is presented in
Section 2. A radiative model is introduced in Section 3. In
Section 4, we simulate the radio pulse profile evolution as the
magnetosphere untwisting and apply the model to XTE 1810
−197 and PSR J1622−4950, respectively. The results are
summarized in Section 5 with some discussion. Some detailed
calculations are presented in the Appendices A and B.

2. Magnetar Quake-induced Twisted Magnetosphere

2.1. Twisted Magnetosphere

The twist of magnetic field lines is strong inside the star and
vanishes in the magnetosphere (Thompson et al. 2002).
However, during a sudden crust quake, the magnetic field in
the outer magnetosphere begins to twist up owing to the
magnetic energy release in the crust (Beloborodov 2009).
Basically, the magnetic field lines are anchored to the star crust
and the field geometry is determined by the motion of the
footpoints. The relaxation of the twist makes a network of
fractures in the magnetar crust, which leads to the motion of the
footpoints, and the entire magnetosphere twists up. During this
process, the ejected current flows along the field lines to the
exterior of the star and comes back at other footpoints
(Thompson et al. 2000).

The twisted magnetic field is supported by these emerging
currents. This configuration can be assumed to be force-free
since the energy release is dominated by the magnetic fields in
the magnetosphere (Thompson et al. 2002). When the
starquake shears outer magnetic fields, a toroidal component
Bf develops and the magnetosphere twists up. In spherical
coordinates (r, θ, f), the twist angle can be written as
(Beloborodov 2009)

ò òy f
q

D = = f ( )d
B dl

Br sin
. 1

Once the whole magnetosphere is twisted, it cannot be
untwisted rapidly because a self-induced electric field builds
up, which initiates pair production and accelerates the pairs
forming current flows. Such twist-maintained electric current is
given by (Beloborodov & Thompson 2007),

p p
q y=  ´ D ( )j B

Bc c

r4 4
sin . 22

The poloidal components Br and qB are not much different from
the corresponding components for a normal dipole even when
twists are strong, e.g., yD ~ 1. The main difference is in the
toroidal term Bf.

To maintain these currents, unsteady pair production in a
short timescale is needed. The minimal charge density that is
needed to support the twist-maintained current is

r br= =
∣ ∣ ( )j
c

, 3tw GJ

where β is a function of r and θ, and rGJ is the Goldreich–
Julian (GJ) charge density (Goldreich & Julian 1969), i.e.,

r
p q

W
=

-
- W

·
[ ( ) ]

( )B
c r c2

1

1 sin
. 4GJ 2 2 2 2

Here, the distribution of β is plotted in Figure 1. The charge
density of the twist-maintained current is a constant for each
magnetic field line. In the corotating frame, the neutral
condition of the magnetosphere is r- =+ -( )n n e GJ, where
+n and -n are the density of positrons and electrons,
respectively, and the current is given by = -+ + - -j v ven en .
In the region without pair production, the net charge is zero,
and the electric current is maintained purely by the pairs
flowing in the closed filed lines, i.e., -+ - ( )n n n
(Beloborodov 2013). Note that the unstable net charge
generation is a necessary condition for coherent emission.
We define

qº ( )u R rsin . 52

In the region where u∼1, it is unlikely to create coherent
emission.
The energy of the twisted magnetic field is continually

dissipated in the magnetosphere. It is worth noting that the
magnetosphere can be divided into two parts: the twist-
maintained current-carrying bundle with twisted field lines (the
j-bundle), and the cavity with untwisted field lines (the
u-bundle). The dissipation is mostly ohmic, since the current
is maintained by the electric field EP parallel to B. The
dissipation is significant at the transition boundary from the
j-bundle to the u-bundle, where the strong currents dissipate as
the magnetic field lines twist down rapidly. As a result, the
u-bundle expands from the region of u=1 to that of u=0
(Beloborodov 2009), as shown in Figure 1. The so-called
cavity front, ub, is defined as the boundary between the
u-bundle and the j-bundle, expanding with an extremely high
speed near ub=1, then decelerates to u 1b . The expansion
can be described as (Beloborodov 2009)

y
= -

D + ¢
( )du

dt

V

BR c V t2 2
, 6b

2
0

where Δψ0 is the initial twist angle, V is the threshold voltage
that can trigger plentiful pairs supplying the electric current,
and ¢ =V dV du is the voltage gradient.

Figure 1. Distribution of β in the magnetosphere. The twist angle is adopted as
Δψ=1. The light blue region is the expanding u-bundle and the dashed lines
are the boundaries between the u-bundle and the j-bundle. The solid lines are
the electric current that support the twisted magnetic fields.

2

The Astrophysical Journal, 875:84 (11pp), 2019 April 20 Wang et al.



2.2. Oscillation of the Magnetosphere

In a starquake, the sudden release of energy can create
seismic waves. After a previous large quake (main-quake),
smaller quakes (aftershocks) occur as the crust around the
displaced fault plane adjusts itself to the effects of the main-
quake. These quakes (main-quake or aftershock) likely excite
significant magnetospheric oscillations. The toroidal modes,
preserving the stellar shape, are fundamental modes that are
pure shear deformations during stellar oscillations. Other
modes also give rise to bulk compression and vertical motion,
which have to do work against the much stronger degeneracy
pressure or gravity. Therefore, the toroidal modes are most
likely excited by starquakes, since the restoring force is due to
the Coulomb forces of the crustal ions (Duncan 1998).

The crust is the outermost ∼1 km layer of an NS where ions
are locked into a solid lattice. It can store a large amount of
elastic and magnetic energy. The density scale-height can be
neglected, for it is typically only a few percent of the crust
thickness (Chamel & Haensel 2008). Within the crust, the ions
in the solid crust are arranged in a Coulomb lattice whose shear
modulus is (Strohmayer et al. 1991)

m =
+ G( )

( ) ( )n Ze

a

0.1194

1 0.595 173
, 7i

2

2

where G = =( ) ( )Ze akT 1732 (Farouki & Hamaguchi 1993),
ni is the number density of ions, Z is the atomic number, and a
is the lattice constant. We adopt a bcc crystal lattice for the
crust, with the lattice constant = ( )a n2 i

1 3. The number
density of ions is r m= ( )n Z mi i e u , where ρi is the mass density
of the ions, mu is the atomic mass unit, and μe is the mean
molecular weight per electron, for which we adopt an
intermediate value of 2.5 here. Then, the shear modulus can
be written as

m
r
r
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erg cm , 8i

i
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4
3

2
3

4
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where r = ´ -4 10 cmN
11 3 is the neutron drip density.

We consider a spherical coordinate system with r as the
radial coordinate. The toroidal displacement is defined as

x xx x= +  =ˆ ˆ · ( )x y , 0, 9x y

where the x and y axes are orthogonal in the plane with r̂ as a
normal vector. Within the crust, we assume that the magnetic
field = ˆB rB is perpendicular to the crust and constant. A shear
stress tensor for the Lagrangian toroidal displacement is given
by (Landau & Lifshitz 1970)

m
x x
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¶
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x x
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j

j

i

where i=x, y. For an ion in the crustal lattice, one can obtain
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where xd =  ´ ´( )B B is the perturbed magnetic field
(Piro 2005). It is assumed that the solution of Equation (11) is

w-[ ( )]AY i k r texplm r , where A is the amplitude of the
displacement and Ylm stand for spherical harmonics. In the
WKB limit, the vertical wave numbers are given by

ò p=k dr nr (Piro 2005). Then, Equation (11) can be written as
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One can obtain the solution of Equation (12),

W =
+ +
-

^( ) ( )v k k v k

v c1
, 13s r r

osc
2

2 2 2
A
2 2

A
2 2

where = +^ ( )k l l R12 2, m r= ( )vs i
1 2 is the speed of sound,

and pr= ( )v B 4A
1 2 is the Alvén speed. Figure 2 shows a few

eigenfrequencies with different modes. These eigenfrequencies
are very high so that it is difficult to detect periodic signals in
the oscillations.
Because of the anchored field lines, the starquake-induced

crust oscillations make the entire magnetosphere oscillating,
which drives the fluctuations of the corotating space charges.
The force-free condition for a corotation magnetosphere is

+ ´ =
( ) ( )E

v
B

r

c
0, 14

where = +( )v v vr spin osc is the velocity at r in the magneto-
sphere, vspin is the spin velocity, and vosc is the oscillation
velocity, which can be written as (Unno et al. 1989)

q
= ¶ -¶ Wf q

- W⎜ ⎟⎛
⎝

⎞
⎠ ( ) ( )v Y Y A r e0,

1

sin
, , 15lm lm

i t
osc osc osc

where A(r) is the oscillation amplitude. The net space-charge
density is given by

r
p

r dr=


= +
· ¯ ( )E

4
, 16

Figure 2. Oscillation frequency of the n=0 (black lines), 1 (red line), 2
(blue line), and 4 (green line) modes as a function of B. The cases of l=1
(black solid line), 2 (black dashed line), and 3 (black dotted–dashed line) for
n=0 are presented. Here, the n>0 modes are independent of l.
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where

r r
q
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The surface displacement amplitude for m=0 mode is given
by (Duncan 1998)

´
-
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⎛
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cm,

18

q2
41

1 1 2

where Eq is the energy released in the starquake. For the ¹m 0
modes, the distribution of strain is difficult, while the amplitude
is roughly of the same order of magnitude. The amplitude at r
is estimated to be ( ) ( )A r A R r R, since the magnetosphere is
corotating with the stellar surface.

3. Radio Emission from a Magnetar

3.1. Pair Production

It is widely believed that pair production is the necessary
condition for pulsar radio emission (e.g., Ruderman &
Sutherland 1975; Zhang et al. 2000). For an ordinary radio
pulsar with B∼ 1012 G, seed electrons are accelerated to an
ultra-relativistic energy with g ~ 107, emitting g-rays via
curvature radiation or inverse Compton scattering, which can
be convert to pairs in strong magnetic fields (Ruderman &
Sutherland 1975; Daugherty & Harding 1996; Zhang &
Harding 2000; Thompson 2008a, 2008b). The environment
of a magnetar is also relevant for pair creation. The standard
one-photon (1γ)-pair production can be suppressed due to
magnetic photon splitting when B becomes comparable to or
exceeds ´B 4.4 10QED

13 G (Baring & Harding 1998).
Photon splitting, even if it is a third-order process, can compete
with 1γ-pair production in magnetospheres, where photons are
below the pair creation threshold at their emission points
(Harding & Lai 2006). Strong vacuum dispersion may arise, so
that all three CP-conservation photon-splitting modes, i.e.,
^, ^ , ^^^, may operate together, in the special
environment of a magnetar (Baring & Harding 2001). Conse-
quently, photons may split before reaching the 1γ-pair creation
threshold.

Nonetheless, two-photon(2γ)-pair production can be an
important source for pair production in a magnetar environment
(Zhang 2001). The interaction is between hard γ-rays and the
copious X-ray photons from the magnetar surface. This process
occurs mostly in the j-bundle where EP exists. The threshold
condition for the 2γ-pair production when  1 2 is (Gould &
Schrëder 1967)

  b-( ) ( )1 cos 2, 191 2 1

where β1 is the angle between the two interacting photons,
and ò1 and ò2 are the soft and hard photon energies in units
of m ce

2, respectively. For a typical blackbody radiation with
temperature kTB, the required γ-ray photon energy is  2

´ -( )kT2 10 0.5 keVB
3 1.

To generate such hard γ-ray photons, we consider the
resonant scattering effect between an electron and an ambient
X-ray photon (Beloborodov & Thompson 2007). In the

electron rest frame, the resonant scattering happens when the
blueshifted photon frequency matches the cyclotron frequency.
The scattered photon acquires energy from Landau levels of
electrons, and has a high energy g keV2 , which indicates a
threshold voltage of 10 V9 in the j-bundle (Zhang &
Qiao 1996). At the γ-ray energy  = ´2 102

3, the attenuation
length of 2γ-pair production can be estimated as l =g2

´9.0 10 cm3 (Gould & Schrëder 1967). For the same energy,
the attenuation length of 1γ-pair production and photon
splitting can be approximated as (Baring & Harding 2001)

l
q

l
q

= ´

= ´

g
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⎞
⎠

⎛
⎝

⎞
⎠ ( )

P r

P r

9.2 10
1 s 10 km 0.1

cm,

5.9 10
1 s 10 km 0.1

cm, 20

1
5

1 2 1 2 1

sp
4

3 7 3 7 6 7

where P is the spin period. Thus, we have l l l< <g g2 sp 1

(Zhang 2001). It means that even if 1γ-pair production is
suppressed by photon splitting, the 2γ-pair production process
can still proceed to produce copious pairs. The attenuation
lengths of each process, with different γ-ray photon energies,
are plotted in Figure 3.
Starquake-induced oscillations can drive a charge deviation

from the G-J density. This deviation triggers an electric field EP
parallel to B. The longitudinal voltage along one magnetic field
line controls the ohmically released power. To generate 2γ-pair
production, this voltage should not be much higher than
109V. The pair plasma is accelerated by this voltage,
maintaining the current until it is dissipated via the ohmic
effect. The EP can be screened by pairs, but can grow again due
to the continued crust oscillations, and the discharging repeats
as the pair plasma leaves the discharging region.

3.2. Coherent Radio Emission

Theoretical models of NS coherent radio emission invoke
one of three mechanisms: emission by bunches; a reactive
instability, and a kinetic instability (Melrose 2017). In this

Figure 3. Dominant regions of 1γ-, 2γ-pair production and photon splitting at
=B 10 G15 are shown: the black line (2γ-pair production), red line (photon

splitting), and blue line (1γ-pair production) define the gray region (2γ-pair
production dominant), light red region (photon splitting dominant), and light
blue region (1γ-pair production dominant).
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paper, we consider the bunch model. To generate coherent
emission, it is required that photons are emitted in phase. In
view of the observed GHz pulse duration, the curvature
radiation timescale Tp∼1 ns is much shorter than that of the
observed pulse emission Tpul, so that there must be more than
one bunch sweeping across the line of sight (LOS; Yang &
Zhang 2018). The half-wavelength for the 1 GHz wave is
15 cm. If the bunch scale is smaller than the half-wavelength,
the phase of emission radiated by each particle in the bunch
would be approximately the same. The N electrons in the bunch
are assumed to move along nearly identical orbits, so that they
act like a single macro-charge, which emits a power N2 times
the power emitted by a single electron (Melrose 2017).
Consequently, the large fluctuating net charge of nGJ can
contribute to the coherent radiation (Yang & Zhang 2018).

We assume that the oscillation-driven charges in the j-bundle
generate coherent radio emission. It is unclear which modes
would be excited and be dominant. Here we consider a typical
mode with l=2, m=0 as an illustration. Basically, modes of

>m 1 are suppressed because Ylm has a term of qsinm , which is
extremely small for θ=1. From Equation (18), the displace-
ment amplitude is = ´( )A R 2.2 10 cm3 , if a quake energy

= ´E 5 10q
41 erg is adopted for a typical NS. Note that an

electric current may flow in closed field lines, which is different
from the case of an ordinary radio pulsar. However, in the
closed field lines with r RLC, the unstable net charges are
difficult to create and some significant absorption may exist
because of the large value of the charge density there. Hence,
the coherent radio emission is suggested to be originated from
the regions far from the stellar surface. The curvature radius

~ ´ ( )R R P2.4 10 5 s cmc LC
10 is adopted at these loca-

tions. For q < 0.5, from the Equation (28), the radiation central
position can be estimated as q ´ r R0.75 sin 1.8LC

q( )P10 5 s sin cm10 (see Appendix A).
It is also assumed that the charges obey a power-law

distribution with a spectral index p and energy cut-off at g1. The
Lorentz factor of particles accelerated by the threshold voltage
is g = ~( ) ( )eV m c V10 10 Ve1

2 3 9 . Therefore, the electron
number in the bunch volume q f qDV Lr0.1 sine
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where p=2 is adopted (see Appendix B). The observed peak
flux is
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where D is the source distance, and n n = [( )Rmin 4c cpeak

g g q( ) ( ) ]L3 , 4740 , 11
3

1
3 3 (see Appendix B). This is generally

consistent with the observed peak flux of a magnetar.

In this scenario, the radiation spectrum is a broken power
law (Yang & Zhang 2018). With the adopted parameters,
the break frequencies in the spectrum can be calculated as
n n n= = =f1.0 GHz, 1.4 GHz, 0.3 GHzl c , and the broken
power-law spectrum is shown in Figure 7 in Appendix B. The
radio spectra of the magnetars are very flat so that the higher
frequency signals can be observed. This flat spectrum is related
to a power-law electron distribution with »p 2. For instance,
the galactic center magnetar PSR J1745−2900 shows a shallow
spectral index of −0.4±0.1 at 2.54–225 GHz (Torne et al.
2015). As shown in Figure 7, n >f 225 GHz is a necessary
condition. The spectrum is flat in the range of n n n< <l c.
From Equation (36), one can calculate aD < ´ -3 10 4, if the
curvature radius is roughly the light cylinder radius. Thus, the
emission region is suggested to be near the light cylinder. Also,
in this scenario, the bunch scale is estimated to be 0.04 cm so
that the millimeter waves can be coherent. At these bands,
pulse scattering and dispersion caused by interstellar medium
can be neglected, which is very helpful for pulsar detection.

3.3. Conal-beam Geometry

Observationally, the radio emission of magnetars has a
variety of pulse profiles and often includes multiple emission
pulse components. In our model, we adopt a phenomenological
conal-beam radiative model (see Rankin 1993, for a review). It
has been proposed that the conal and core structures can be
created via curvature radiation (e.g., Gil & Snakowski 1990;
Gangadhara 2004). We assume a circular emission beam for
each conal/core component. Let (ri, θi) be the coordinates of
the emission point for the ith cone. The angle Γi between the
pulsar magnetic axis and the magnetic field line tangential
direction is calculated at the points of the ith cone by (Gil et al.
1984; Thorsett 1991)

z a
f z aG

=
D

+
-⎜ ⎟ ⎜ ⎟⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )sin

2
sin sin sin

4
sin

2
, 23i2 2 2

where ζ is the angle between the LOS and the spin axis, α is the
magnetic inclination angle, and Δf is the corresponding
apparent pulse width (or separation) resulting from such a
geometric configuration. The relationship between Γi and the
emission point is (Gangadhara & Gupta 2001)

q = -
G

 +
G

⎛
⎝⎜

⎞
⎠⎟ ( )tan

3

2 tan
2

3

2 tan
. 24i

i i

2

If one ignores the aberration and retardation effects, photons
are emitted tangentially along the field lines and their
frequencies are determined by the curvature radius and the
Lorentz factor. The location of the emission point is determined
by Equation (28). Typically, we assume that there are five
emission components, which consist of one core and two conal
rings.
A shift of the position of conal components with respect to

the core component, a.k.a., the so-called aberration and
retardation effects, have been observed in many radio pulsars
(see Krzeszowski et al. 2009 for a review). These effects
address the bending of the radiation beam and the different
paths of radiation from the conal emission regions to the
observer. The aberration and retardation always play an
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important roles in low frequency emission, which is believed to
originate from the high-altitude regions, i.e., the regions that
are far from the stellar surface. The small net phase shift due to
aberration and retardation for the ith cone is given by
(Gangadhara & Gupta 2001)

h
z

p
+ ( ) ( )r

R

1 sin

2
, 25i

i

LC

where ζ is the angle between the LOS and the spin axis. Both
the aberration and retardation effects make the pulse compo-
nents to appear at earlier longitudinal phases.

4. Case Studies: XTE J1810−197 and PSR J1622−4950

In the following, we apply the physical and geometric radio
emission model to two magnetars and interpret their radio
emission.

4.1. Observational Properties of XTE J1810−197

XTE J1810−197 is an AXP with spin period P=5.54 s and
surface magnetic field B; 3×1014 G (Gotthelf & Halpern
2007). An outburst occurred some time between 2002
November 17 and 2003 January 23 (Ibrahim et al. 2004), and
the X-ray luminosity decays on a timescale of years (e.g.,
Halpern & Gotthelf 2005). This object switches on as a radio
pulsar during the decay of the X-rays, and shows a hard
spectrum, strong linear polarization and variable pulse profiles
that are very different from ordinary radio pulsars (Halpern
et al. 2005). From radio and X-ray observations, the geometry
of XTE J1810−197 is inferred as a z =  ( ) ( ), 52 , 29
(Bernardini et al. 2011), roughly consistent with the geometry
we assumed in Section 3.2.

Camilo et al. (2016) proposed that there are five peaks on the
radio pulse profile of XTE J1810−197. P1 appeared at the very
beginning and disappeared last. This peak was suggested to be
the component IV of the outer cone in our model. The
component V is missing, perhaps because the LOS does not
sweep through the beam. The phase of P3 does not drift,
indicating that it may be the core component I. P2 appeared at
the late stage of evolution. Its presence in the early stage was
not positively confirmed. The interval phase of P2 and P5 get
smaller because the inner cone shrinks as the u-bundle expands.
Also, there may be some spectral evolutions that lead to their
flux evolution. These peaks may be the inner cone components
II and III. However, P4 is very close to P5 and sometimes they
are mixed. It is hard to identify P4 because there may be some
multi-peak structures caused by noises.

4.2. Radio Emission Modeling of XTE J1810−197

We assume the initial center of the inner cone is at
=r R0.11 LC (subscript i= 1 for the inner cone and i= 2 for

the outer cone). The curvature radius at 1.4 GHz is estimated as
g´ ( )R 1.9 10 700 cmc

9 3 . For simplicity, we assume that
each emitting component has the same curvature radius.
Therefore, we have the angular position of the inner cone
θ1=0.35. It is worth noting that pair production sharply ends
at the surface of B ≈ 1013 G (Beloborodov 2013). Multipolar
magnetic fields may exist near the stellar surface, leading to
possible multi-hollow structures of charge formation regions.
Emitting charges come from different formation regions that
are thought to be ring-like, i.e., multiple annuli, leading to

multi-cones (e.g., Gil & Sendyk 2000), shown in Figure 4. As
the u-bundle expands, the shrinkage of annulus a leads the
phases of the outer cone to creep toward the core component.
The shape and the location of the annuli b and c are kept

Figure 4. Evolution of the twisted magnetosphere (left) and the geometric
configurations of the emission (right). From top to bottom: (i) =t0.75

=( )t u 0.75 ;b (ii) = =( )t t u 0.5 ;b0.5 (iii) = =( )t t u 0.42 ;b0.42 (iv) =t0.37

=( )t u 0.37b . In the left panel, the light blue region is the u-bundle, where the
field lines are untwisted. In the right panel, the phase locations of the five
emission components are shown without the aberration and retardation effects,
in the form of two cones (dashed rings A and B) around one central core
(dashed ring C). Gray lines are the magnetic field lines. Solid rings are the
charge formation annuli for each radiation cone or core. The line of sight (LOS)
is marked as horizontal line in each panel.
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constant. The twist-maintained current is intensified, for the
j-bundle twists up within the frame of >dV du 0 (see
Section 4.3). From Equation (16), we have >dE dt 0 and

>dV dt 0. Hence, the emission center for a given frequency
moves toward the magnetic axis, while the emission cone
shrinks as the u-bundle expands. For simplicity, the angle G2 is
adopted as the central angular position of the j-bundle, i.e.,
G ~ ( )u0.5 arcsin b2

0.5. The center location of the cone (or core)
is determined by Equations (23) and (25). As the emission
center gets closer to the magnetic axis, the width of each
component does not decrease, until the emission cone is eaten
by the u-bundle.

Later, when the u-bundle covers the entire outer cone, the
outer boundary of the emitting region reaches the tangent point
to the LOS. Note that the area and location of each emission
cone are determined by its charge formation region. As a result,
components IV and V disappear, and the inner cone starts to
shrink. Stages of the evolution of the emission components are
shown in Figure 4. The geometry is under the condition of
α=50° and ζ=30°. Phase evolutions are also simulated and
plotted in Figure 5. Finally, the entire magnetosphere twists
down and the radiation damps.

From the radio profile of XTE J1810−197 in late 2008, the
position of emission cone is estimated to be ~r R0.24i LC
(Camilo et al. 2016) with θi∼0.65. Thus, we have >u ui LC.
The radio emission is created on the closed field lines of the
j-bundle, which is different from the case of an ordinary radio
pulsar. For an ordinary radio pulsar, charged flow is difficult to
form in closed field lines, whereas such global electric currents

can be triggered in the closed field lines within the framework
of a magnetar-quake. The emission region is suggested to be far
from the stellar surface because of its high opacity. Such a high
altitude gives rise to significant aberration and retardation.
Hence, the j-bundle plays the role of the open field lines within
the framework of ordinary radio pulsars, i.e., providing electric
currents. It enlarges the beam size that increases the chance that
the beam is swept by the LOS.
We have invoked core plus double conal emission

components to interpret the radio pulse profiles of XTE 1810
−197. The outer cone is related to the boundary between the
twisted (j-bundle) and untwisted (u-bundle) regions, whereas
the inner cone keeps constant before the outer cone is eaten by
the u-bundle. Within the pulsar model, the core-double-cone
structure was also interpreted within the framework of the
inverse Compton scattering model (Qiao & Lin 1998), in which
radiative particles can be generated from one annulus. In this
scenario, the shrinkage of the u-bundle leads to the core and
two cones shrinking together, so that the core component may
diminish because the ring C is separated from the LOS. This
seems not applicable to the observations of XTE 1810−197.
Alternatively, the patchy beam model (Lyne & Manchester
1988) has been applied to interpret the pulse profiles of radio
pulsars. This model predicts no frequency dependence for the
relative pulse phase between surpluses, which is inconsistent
with the systematic variation of pulse components as observed
in XTE 1810−197. Finally, a fan beam “patchy” model was
proposed by Wang et al. (2014) to interpret radio pulsar beams.
It predicts that the pulse width increases with the absolute value

Figure 5. Phases of each component during the j-bundle shrinkage and the schematics of the pulse profile evolution. The core component is labeled as cone 0 (black
round) while the inner and outer cones are labeled as cone 1 (black triangles) and cone 2 (black squares), respectively.
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of the impact angle, in contrast with the trend for the conal-
beam model. This can be tested by future observations with a
larger sample of radio magnetars.

The decay rate of the radio flux is large from the early state
of the transient because of the high ohmic dissipation rate. It
then decreases because the u-bundle expansion slows down.
The spin-down rate decreases during this period of time
(Camilo et al. 2007a) because of the growth of the untwisted
region and tends to be a constant later as the outflow dissipates.
This scenario broadly fits the observed spin-down behavior of
XTE J1810−197. In addition, some continued large-amplitude
day-to-day fluctuations on the flux density of XTE J1810
−197 are found after 2007. These fluctuations may be caused
by some aftershocks. The quake amplitude distribution of
magnetars resembles that of earthquakes, e.g., obeying the
Gutenberg−Richter law.

4.3. X-Ray Emission of XTE J1810−197

Magnetars always show some nonthermal components in the
hard X-ray band, e.g., above 20 keV, even though they have
Planck-like spectra in the softer band. The X-ray spectra of
XTE J1810−197 after the outburst in 2003are plotted in
Figure 6 (Albano et al. 2010). The spectra can be well fitted by
a three-component blackbody model. It is found that the area of
the cold component, which comes from stellar cooling, is
getting larger. In the case of twisted magnetosphere, after the
starquake, the outflow particles maintain the j-bundle, where
the accelerating electric field draws the positrons back from the
upper pair formation front. These positrons fall onto the stellar
surface, forming a hot spot emitting thermal X-ray photons
(e.g., Harding & Muslimov 2001), which shrinks as the
untwisted u-bundle expands.

Under the condition of »( )V u const, the twist-maintained
currents dissipate rapidly from the very beginning and then the
decay rate decreases when u=1. Therefore, Equation (6)
determines the evolution timescale of the j-bundle shrinkage.
For V(u)=const, one can calculate the timescale as (e.g.,

Beloborodov 2009)
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This is generally consistent with the observed timescale of
radio luminosity decay (e.g., Camilo et al. 2016). The twist
angle is also a constant until it is eaten by the expanding
u-bundle front. Additionally, the free energy stored in
the twisted magnetosphere is yD ~ ( )E B R 24tw
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Consider the condition of dV/du>0 in the j-bundle. As
discussed in Section 3.1, in principle, a decreased energy of
hard γ-ray photons near the magnetic axis would imply a
negative pair number gradient dn dupair . Therefore, the hot
spot heating rate decreases as the colatitude increases. One
can also obtain dΔψ/dt>0 and dj/dt>0 at the j-bundle
(Beloborodov 2009). This does not result in an extra net
charge fluctuation because the evolution timescale is much
longer than the duration of a pulse. A fraction of the released
energy during the u-bundle twisting down propagates into
the j-bundle, so that the j-bundle magnetic fields twist up.
This may be the reason why the observed luminosity one
year after the 2003 outburst is below the estimated
luminosity LX.

4.4. The Case of PSR J1622−4950

PSR J1622–4950 is another radio emitting magnetar with a
period of P=4.3 s and nearly 100% linear polarization (Levin
et al. 2010). It has a flat spectrum, highly variable flux density
and pulse profiles during 2009–2011, with the X-ray flux
decreasing by an order of magnitude (Anderson et al. 2012).
Detectable radio emission was observed from 1999 to 2003,
and from 2011 November to 2014 March (Scholz et al. 2017).
The radio flux decreases (ranging over ∼3–80 mJy) and finally
disappeared as the entire magnetosphere is untwisted. The peak
flux during the evolution is a few to several tens mJy, similar to
that observed in XTE 1810−197, matching the calculation of
Equation (22).
However, the pulse profile of this object consists of two main

bright peaks, so only one emission cone is needed without the
need of introducing a core component. From Equations (23)
and (24), if one assumes α=20° and ζ=10° (e.g., Levin
et al. 2012), the position of emission cone is estimated as
~r R0.1i LC with θi=0.71. Therefore, one has ~u u5i LC. The

two components are emitted from the closed field lines of the
j-bundle. These peaks tend to get closer (Scholz et al. 2017)
since the emission cone shrinks while the u-bundle expands.
The timescale of the pulse profile variation is similar to that of
the flux density and the torque, which meets the estimation
from Equation (26). The variable torque of the magnetar, as a

Figure 6. X-ray spectra of XTE 1810−197 after the 2003 outburst. A three-
blackbody model is adopted in each spectrum. The source distance is adopted
as 3.5 kpc (Minter et al. 2008).
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common property for magnetars following outbursts, was also
observed in this object (Camilo et al. 2018).

The X-ray evolution also shares similar properties with the
case of XTE J1810−197. However, the X-ray observations are
not sufficient to indicate that the area of the hot spot is getting
smaller. Also, no X-ray outburst was detected before its radio
decay. From the exponential decay of the X-ray flux during
2007–2011, Anderson et al. (2012) argued that an undetected
X-ray outburst occurred not long before mid-2007. Possibly,
another X-ray outburst would have also occurred not long
before 1999.

5. Summary and Discussion

A model of coherent curvature radiation for magnetars is
proposed within the scenario of a magnetar-quake-induced,
twisted, and oscillating magnetosphere. We show that radio
emission originates from the twisted current-carrying bundle
(the j-bundle), which is similar to the open field line region of
normal pulsars (see Beloborodov 2009, who suggested that the
radio emission is from the closed field line region). Continued
oscillations are excited in this region due to the aftershocks and
untwisting of the magnetosphere, with pairs generated via two-
photon processes. The j-bundle shrinks with time as the
untwisted region (the u-bundle) increases, so that the radio
emission beam progressively becomes narrower. The radio
emission profile evolves with time as a consequence of the
shrinkage of the j-bundle, and disappears when the radio
emission beam is small enough to escape the LOS. This model
predicts a peak flux of radio emission and a flat spectrum that
are generally consistent with the observations of magnetar
radio emission. The shrinkage of the j-bundle is also consistent
with the evolution of the X-ray hot spot of the magnetars
during the radio active phase. We apply a time-dependent
conal-beam radiative model to successfully explain the variable
radio pulsation behaviors of XTE J1810−197 and PSR
J1622−4950.

Our study shows that magnetars most likely have a different
radio emission mechanism from ordinary radio pulsars. Even
though the coherent mechanism is similar (bunched curvature
radiation), the mechanisms to excite bunches are different.
Whereas radio pulsars likely trigger bunches through unsteady
pair production from the polar cap region defined by the open
field lines, magnetars trigger bunches through quake-driven
oscillations and continued untwisting of the magnetosphere.
The twisted magnetosphere serves as an effective open field
line region, which shrinks as a function of time. The shrinkage
of this effective open field line region is the ultimate reason for
the transient nature of magnetar radio emission.

The difference of the emission mechanism between
magnetars and normal pulsars is also reflected on their pair
production mechanisms. PSR J1119−6127, for instance, is a
highly magnetized radio pulsar. Archibald et al. (2016) found
that the persistent X-ray flux increased by a factor of 160 with a
large glitch following the X-ray bursts. Unlike radio-transient
magnetars, the radio emission quenches following an X-ray
burst, and reappears roughly two weeks later (Burgay et al.
2016a, 2016b; a model of peculiar glitch, see Akbal et al.
2015). Even the magnetic field is very high for this object, 1γ-
pair production may not be suppressed. The X-ray burst may
have formed a fireball, making pair plasma density exceeding
the G-J density by orders of magnitude. The leakage of these
pairs to the polar cap region may have screened the parallel

electric field and quenched the radio emission (Archibald et al.
2017). This is different from the magnetar case, because the
triggering mechanism for pair production and radio emission is
very different for magnetars.
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Appendix A
Dipolar Geometry

We make some brief calculations of the pulsar geometry. For
a dipole magnetic field, the curvature radius is
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It can be reduced to that of a simple relationship when θ=1,
i.e.,
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The bunch volume can be estimated as (Yang & Zhang 2018)

q a fD D ( )V Lr
2

3
sin , 322

where Δα and Δf are the bunch opening angles.

Appendix B
Coherent Radio Emisssion

For a single electron, the energy radiated per unit frequency
interval per unit solid angle is given by (Jackson 1998)
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where two polarized components of amplitude are
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The normalization of electron distribution is =N
g d- -( )p nV1 1

1 . In this picture, the spectrum is a broken
power law (Yang & Zhang 2018). The break frequencies are
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For the given parameters in Section 3.1, the spectrum are
plotted in Figure 7. The peak flux is
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where = G G -( ) [ ( ) (( ) )]C p p4 2 3 1 3p 3 2 and T is the
observation time.
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