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Abstract It is of great importance to study pulsar beam shape if we are concerned
with emission theories and pulsar birth rate. Both observations and the ICS model
show that different emission components are emitted from different heights. The
relative longitude phase shifts due to different heights of the emission components
and the toroidal velocity of the electrons are considered in this paper. Several pos-
sible observational effects arising from the phase shift are presented. The emission
beams may not have circular cross section although the emission region may be
symmetric with respect to the magnetic axis.
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1 INTRODUCTION

Soon after the discovery of pulsars, the rotating vector model (RVM) was proposed, which
well explained the linear polarization characteristics of pulsar radio emission. In this model
Radhakrishnan and Cooke (Radhakrishnan & Cooke 1969) assumed that relativistic particles
stream out along dipolar magnetic fields of the pulsar and the polarization position angle of
emitted radiation from these particles is correlated with the magnetic curvature. Theoretical
extensions of the RVM have appeared in the literature (e.g., Ferguson 1976; Blaskiewicz et
al. 1991; Hibschman & Arons 2001), that included some specific physical factors, such as the
special relativistic effects and the polar-cap current flow.

However, the RVM fails to explain the jumps in position angle observed in the mean pulse
as well as in the individual pulses (Stinebring et al. 1984). This led to the assumption that
the pulsar radio beam contains two nearly orthogonal polarization modes, the superposition of
which results in the non-S-shaped position angle variation in the mean pulse and the two ∼ 90◦

separated distributions of position angles in individual pulses (see the paper by Mckinnon &
Stinebring (1998) and references therein). Nevertheless, there is still a possibility that a modified
RVM, without the inclusion of the orthogonal modes, can reproduce the observed position angle
“jumps” if we take into account the linear depolarization of pulsar beams and the observational
uncertainties due to the polarimeters used (Xu, Qiao & Han 1997; Xu & Qiao 2000).
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In view of the observational fact that the radio emission of pulsars may have three compo-
nents (core and two cones) which are emitted from different heights above the pulsar surface
(Rankin 1983), Xu et al. (Xu, Qiao & Han 1997) found that the position angle of the mean
pulse jumps at certain longitudes where the linear polarization is approximately zero if the
retardation effect, which causes the beam centers to be shifted relative to one other, leads
significantly to linear depolarization.

In this paper, we further study the issue arising from different emission heights calculated
according to the inverse Compton scattering model (Qiao & Lin 1998), that naturally reproduce
the core and conal components.

Besides the polarization effect discussed above, different emission heights may also have
notable consequences on the beam shape. Many authors have investigated observationally
the pulsar beam shape, their results are summarized as follows. Jones (1980) finds that the
latitudinal radius of beam cross Section could be 2.5 times the longitudinal one. Narayan
& Vivekanand (Narayan 1983) modify this ratio to be 3.0. Lyne & Manchester’s (Lyne &
Manchester 1988) conclusion is that the shape of the emission beam is approximately circular.
Biggs (Biggs 1990) proposes that there may be some meridional compression. Wu & Shen
(Wu, Shen 1988) find that, for pulsars with short periods, the radius of the emission beam in
the latitudinal direction is larger. However, the latitudinal radius is smaller for pulsars with
longer periods. Rankin, therefore, changes her morphological beam shape from an elliptical
cross section (Rankin 1983) to a circular one (Rankin 1993). Our numerical results in Section
3 may be checked against such observational studies in the future.

We find that the emission beams of pulsars with small rotation periods do not have circular
cross sections even if the emission regions are symmetric with respect to the magnetic axis when
we take into account the toroidal velocity due to rotation.

This paper is organized as follows. After inspecting various aspects of the retardation
effect caused by different emission heights and their possible observational consequences in
Section 2, we calculate the emission beam arising from relativistic particles with poloidal (along
magnetic field lines) and toroidal (perpendicular to field lines) velocities in Section 3. And it is
summarized in Section 4. A statement which gives the phase shift between two emission units
at arbitrary positions is proved geometrically in the Appendix.

2 RELATIVE LONGITUDE SHIFT DUE TO DIFFERENT HEIGHTS

It is generally believed that pulsar radio emission originates in the region near the last
open field lines. In this section, we assume that the particles in the last-open-field-line region
responsible for the observed radiation have only poloidal velocities along the field lines (i.e.,
the toroidal velocity is neglected), and are accelerated symmetrically relative to the magnetic
axis. The emission region of each beam component is thus also symmetric relative to the
axis. According to the Appendix, the phase shift of all the emission elements of a given beam
component is the same since the values r · n0 of these emission elements is the same, r being
the vector position of the element and n0 the emission direction. Therefore the emission beam
should have circular cross sections in this case.

2.1 Emission Heights and Beam Shift

We know from the Appendix that an emission element at the vector position r is equivalent
to an original virtual one whose longitude phase shifts to an earlier value δφ(r) = Ωr · n0/c.
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We now calculate δφ(r) as a function of r, based on the dipole geometry of magnetic field
configuration.

For a dipole field line, we have

r = λ
cP

2π
sin2 Θ, (1)

where r = |r|, Θ is the polar angle, P the rotation period, c the speed of light, and λ a parameter
which characterizes the sort of field lines (λ ≥ 1, λ = 1 for the last open field lines). Based on
Eq.(1), the angle Θµ between the direction of the magnetic field at vector position r and the
magnetic axis µ reads,

cos Θµ = 2λcP−6πr√
λcP (4λcP−6πr)

,

= 2−3 sin2 Θ√
4−3 sin2 Θ

.
(2)

Fig. 1 The phase shift δφ for pulsars with
P = 0.03, 0.05, 0.1, 0.5, 1.0 s, based on Eq.(3).
The emission height (spherical coordinate r) is
from 30 to 103 km. λ = 1.

Therefore, assuming that the elementary
emission is along the magnetic field lines,
according to Eqs.(1)–(2) and the Ap-
pendix, we obtain the phase shift δφ as a
function of r,

δφ(r) =
4πr
λcP

√
λcP − 2πr
4λcP − 6πr

, (3)

and the phase difference ∆φ between two
emission beam components of heights ra
and rb is

∆φ = δφ(ra)− δφ(rb). (4)

We note, from Eq.(3), that δφ is a function
of the rotation period P and of the distance
r, but independent of the magnetic incli-
nation angle α or the impact angle β. The
calculation of the phase shift δφ for pulsars
with periods P = 0.03, 0.05, 0.1, 0.5 and
1.0 s are shown in Fig. 1.

We see also from Fig. 1 that the retardation effect arising from different emission heights
is less important for pulsars with longer periods P , but is not negligible when P is small. For
instance, the phase difference between the components at heights 30 km and 300 km could be
over 10◦ if P = 30 ms. while it is only about 1◦ for emission components at heights 50 km and
500 km if P = 0.5 s.

2.2 The Relationship between the Observing Frequency and Phase Shift

Theoretically, we know the emission heights of beam components at a given observing
frequency in the inverse Compton scattering model (Qiao & Lin 1998; Xu et al. 2000), in
terms of which the three components (core, inner cone, and outer cone) can be understood
naturally. The frequency ν of radio wave emitted at position r (or at height r−R, R being the
pulsar radius) can be obtained by following Eqs.(5)–(7). Low frequency electromagnetic waves
with frequency ν0 are supposed to be produced near the pulsar surface due to the RS-type
vacuum gap sparking (Ruderman & Sutherland 1975). These waves are assumed to propagate
nearly freely in the highly inhomogeneous plasma of the pulsar magnetosphere and to be inverse
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Compton scattered by the secondary particles with Lorentz factor γ to turn into radio waves
observed at frequency ν (Xu et al. 2000),

ν = 1.5γ2ν0(1−
√

1− γ−2 cos θi), (5)

where the incident angle θi is the angle between the wave vector of the low frequency wave
and the direction of the electron (moving along the magnetic field in the approximation of this
paper), which can be calculated to be

cos θi =
2 cos Θ + (R/r)(1− 3 cos2 Θ)√

(1 + 3 cos2 Θ)[1− 2(R/r) cos Θ + (R/r)2]
. (6)

The Lorentz factor of the relativistic electron should decrease1 with height, in the form suggested
in (Qiao & Lin 1998):

γ = γ0 exp[−ξ r −R

R
], (7)

where γ0 is the initial Lorentz factor near the pulsar surface, ξ the parameter reflecting the
extent of the energy loss.

The relation between the observing
frequency ν and position r can be found
from Eqs.(1), (5)–(7). For a given ν
we find three solutions for r: r1, r2, r3,
the positions of the core, the inner
cone, and the outer cone, respectively.
The phase differences of the beam com-
ponents between the outer and inner
cones, and between the inner cone and
core, are calculated for observing fre-
quencies up to a few GHz in the ICS
model; these are shown in Fig. 2.

We see from Fig. 2 that, on one
hand, at lower frequencies ν, the phase
difference ∆φ2 ≡ δφ(r3) − δφ(r2) be-
tween the outer and inner cones is no-
table. For example, ∆φ2 = 30◦ when
ν = 2 × 107 Hz. And ∆φ2 decreases
monotonically with increasing ν. On
the other hand, the phase difference
∆φ1 ≡ δφ(r2) − δφ(r1) between the
core and the inner cone components is
small at lower ν. ∆φ1 = 0.05◦ and
increases monotonically with increasing
ν. The observational tests and/or con-
sequences of these features need further
investigation.

Fig. 2 The phase difference between the

beam components as functions of observing

frequency for the ICS model. The upper two

lines (solid and short dashed) are for the phase

difference between the outer and inner cones,

while the other lines, between the inner cone

and the core. The pulsar periods are chosen

to be 0.1 and 0.05 s, and other parameters are

γ0 = 3 × 103, ξ = 3 × 10−2, R = 104 m, and

ν0 = 105HZ. λ = 1.

1 Electrons will lose their kinetic energy, via, e.g., curvature radiation and/or the inverse Compton scattering
of these electrons off thermal X-ray photons from the pulsar surface, when they are moving along magnetic field
lines.
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2.3 Possible Distribution of Singular Points on the Celestial Sphere

There may be some points on the celestial sphere where the linear polarization intensity
L = 0. We call such points “singular points”. The polarization position angle should jump2

by exactly 90◦ when a line of sight goes across one of the singular points (Xu, Qiao & Han
1997; Xu & Qiao 2000). Therefore the distribution of the singular points on the celestial sphere
would determine the properties of the variation in the position angle.

Generally, it is hard to calculate the singular point distribution since there are many factors
that are not well understood, that cause depolarization (Xu & Qiao 2000; Lyutikov 1999) of
pulsar beamed radiation. However, if the depolarization is mainly due to incoherent superpo-
sition of emission components at different heights, and if there are only two components, we
may get the singular point distribution easily.

In this special case the sufficient and necessary conditions that must be satisfied at a singular
point are

Fig. 3 A possible distribution of singular
points on the celestial sphere assuming that
there are only two emission components, and
that the linear depolarization arises only from
the incoherent superposition of those two com-
ponents. The phase difference between the
components is assumed to be 15◦, and the in-
clination angles are chosen to be 30◦ and 60◦,
respectively, in the computation.

{
ψ1 − ψ2 = ±π/2
L1 = L2

, (8)

where ψi and Li (i = 1, 2 for the first and
second components) are the position angle
and linear polarization intensity of the i-th
component. The first condition, i.e., ψ1 −
ψ2 = ±π/2, is thus only a necessary one for
a singular point. Considering the identity
tan(ψ1 − ψ2) = tanψ1−tanψ2

1+tanψ1 tanψ2
, we can re-

write the necessary condition as

tanψ1 tanψ2 = −1. (9)

The possible distribution of singular
points on the celestial sphere is calculated
for this special case based on Eq.(9), and
shown in Fig. 3. We assume the phase dif-
ference between the centers of the com-
ponents due to their different emission
heights to be ∆φ = 15◦, and the incli-
nation angle α = 60◦ or 30◦. We find
from Fig. 3 that the distribution become
“flatter” when the inclination angle α is
smaller, i.e., larger α may be more favor-
able for a line of sight to go across a singu-
lar point, and the possibility of the position
angle curve “jumping” is increased.

3 EMISSION BEAMS IN THE ICS MODEL

In the above discussion, only the electron velocity along magnetic field lines (the poloidal
velocity) is considered. However, as a pulsar rotates, an electron does have a toroidal velocity
Ω × r (see Fig. 4). Actually, the velocity of an electron in the observer’s rest frame can be

2 The position angle may jump approximately 90◦ if a line of sight passes near a singular point.
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obtained by the relativistic velocity transformation of the poloidal velocity in the rotating
frame. The inclusion of the toroidal veloc-
ity has at least one implication: an emis-
sion unit will undergo a phase shift with
respect to the magnetic direction nB since
a relativistic electron emits photons in the
direction of its motion. In this section, we
calculate the beam shape as modified by
the inclusion the toroidal velocity, based
on the derived emission heights in the ICS
model (Qiao & Lin 1998). In the follow-
ing computation, two phase shift effects,
one from different emission heights and one
from toroidal velocity are included. Ac-
cording to Fig. 4, one can find the relation-
ship between {θ, φ} and {Θ,Φ},

cos θ = cosα cos Θ− sinα sinΘ sinΦ

sinφ =
cosα sinΦ sin Θ + sinα cos Θ

sin θ
cosφ =

cos Φ sinΘ
sin θ

,

(10)
which will prove useful below.

We note the linear rotation velocity at
a position vector r is v,

Fig. 4 A sketch of two coordinate systems.
we assume the µ-coordinate, in which the mag-
netic axis µ is chosen as the z-axis, turns clock-
wise through an angle α (the inclination angle)
along the x-axis of the Ω-coordinate. A posi-
tion vector r can be represented by {r, θ, φ }
in the Ω-coordinate system, or by {r, Θ, Φ } in
the µ-coordinate system. nB is the unit vector
of the magnetic field.

v = |Ω× r|
= Ωr

√
1− (cosα cos Θ− sinα sinΘ sinΦ)2

. (11)

Thus, by the relativistic velocity transformation, one finds two components, u1 (in the Ω×r

direction) and u2 (in the [(Ω× r)×nB ]× (Ω× r) direction), of the velocity of an electron in
the observer’s rest frame,

u1 = −c
√

1−γ−2 sinα sin Θ cos Φ+v
√

1+3 cos2 Θ
√

1+3 cos2 Θ−v
√

1−γ−2 sinα sin Θ cos Φ/c
,

u2 = c
√

(1−γ−2)(1−v2/c2)(1+3 cos2 Θ−sin2 α sin2 Θ cos2 Φ)
√

1+3 cos2 Θ−v
√

1−γ−2 sinα sin Θ cos Φ/c
,

(12)

where γ is the Lorentz factor of the electron in the rotating frame. Therefore the angle δ

between nB and the emitted photon is,

δϕ = cos−1[
− sinα sinΘ cos Θ√

1 + 3 cos2 Θ
]− cos−1[

u1√
u2

1 + u2
2

], (13)

which is also the phase shift due to the toroidal velocity.
Combining the phase shifts of δφ (Eq.(3)) and δϕ (Eq.(13)), we can calculate the emission

beams in the ICS model. We use the results in Fig. 2 to clarify the emission heights. The radio
emission is assumed to come from a region between magnetic field lines specified by λ = 1.0
and by λ = 1.8. The radius of the stellar surface of the feet of the field lines corresponding to

λ = 1.8 is ∼ λ−1/2θp ∼ 0.75θp, where θp = arcsin
√

2πR
cP , is the radius of the polar cap. The

cases of rotation period P = 0.1 and 0.05 s, and observing frequency ν = 109 Hz are presented
in Fig. 5 and Fig. 6 respectively. The parameters in the simulation are listed in Table 1.
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Table 1 The Chosen and Calculated Parameters∗ in the ICS Model

for the Computation of Emission Beam Components

P (s) ν (Hz) r1(m) r2 (m) r3 (m) θµ1 (◦) θµ2 (◦) θµ3 (◦) ∆φ1 (◦) ∆φ2 (◦)
0.1 109 18820 81900 483820 5.4 11.3 28.1 0.76 4.74
0.05 109 20695 56040 697000 8.0 13.2 50.5 0.85 14.71

∗P – rotation period; ν – the observing frequency; ri – emission height of component i;

i = 1, 2, 3 denotes core, inner cone, and outer cone, respectively; θµi – angular radius of

component i; ∆φ1 and ∆φ2 are the phase differences between core and inner cone, and

between inner and outer cones, respectively.

From Fig. 5 and Fig. 6, we see that the emission beams are clearly not symmetric, although
the emission regions of these components may be symmetric with respect to the magnetic axes.
The width of the first pulse in a conal component would be much smaller than that of the
second. Besides the clear phase shifts between the components, the emission beams may not
have circular cross sections when the rotation period is small (see Fig. 6). The pulses of impact
angle β > 0 arrive earlier than those of β < 0. This is understandable. Since the emission
region of β > 0 is farther from the rotation axis than that of β < 0, the phase shift effect here
is greater due to a larger toroidal velocity.

Fig. 5 The emission beams of core, inner
cone, and outer cone simulated in the ICS
model, with the inclusion of the phase shift
effects both due to different emission heights
and toroidal velocity. The inclination angle
α = 30◦, the rotation period P = 0.1 s. Other
parameters are the same as in Fig. 2.

Fig. 6 Same as in Fig. 5, but for P = 0.05 s.

4 CONCLUSIONS AND DISCUSSION

A detail consideration of the relative longitude phase shift due to different emission heights
of the three components is presented. The main conclusion can be summarized as follows.

(1) An emission unit along the direction n1(θ0, φ1) at an arbitrary position r1 arrives



Relative Longitude Shift of Pulsar Beams 159

earlier than another emission unit along the direction n2(θ0, φ2) at another position r2, the
phase difference between these two is φ1−φ2 + Ω(n1 · r1−n2 · r2)/c (if this value is positive),
where Ω is the rotational angular velocity.

(2) The phase shift effect is less important when the rotation period P > 0.5 s.
(3) The phase shifts, as functions of the observing frequency ν for the ICS model, are

presented. As ν increases, the shift between the outer and inner cones decreases, while the shift
between the inner cone and core increases.

(4) Larger inclination angles are more favorable for the appearance of jumps in the polar-
ization position angle.

(5) The emission beams are not symmetric in the ICS model, when the phase shift effects
due to both different emission heights and toroidal velocity (Ω× r) are included.

In the simulation of the beam shape, we just took the symmetric emission region in the
ICS model for simplicity. However, the emission region should actually not be symmetric with
respect to the magnetic axes, when we consider that, for a given inverse Compton scattering
process, the low-frequency wave is emitted at an earlier sparking point, and that electrons are
not moving exactly along magnetic field lines. How about the emission beams and polarization
properties when these considerations are included? A further study is called for.

Appendix

Observations show that emission components (core, inner cone, and outer cone) could come
from different heights (Rankin 1983). The longitude phase shifts between these components are
thus inevitable (Xu, Qiao & Han 1997). We now try to evaluate this shift between two emission
components. We procedure is as follows. First, we find a virtual equivalent3 at origin for
an emission unit at arbitrary position; then we compare the phases of the virtual equivalents.
The phase difference between two virtual equivalents is actually the observed phase difference
of those two corresponding emission units. Our conclusion can be expressed as the following
proposition:

An emission unit along a direction n0(θ0, φ0) at an arbitrary position r(θ, φ) is equivalent
observationally to a virtual emission unit along the direction n′

0(θ0, φ
′
0) at origin, where φ′0 =

φ0 + Ωτ , τ = r · n0/c, Ω and c are the rotational angular velocity and the speed of light,
respectively.

Our proof now follows. Referring to Fig. 7, we erect coordinates o − xyz in the observer’s
rest frame, where z-axis is along the rotational axis (Ω), the origin is at the center of the pulsar.
We consider the emission along n0 at an arbitrary point E. A plane ABC is created so that n0

is perpendicular to it. Because all of the emission units along the direction n0 at those points
which are on the ABC plane should be observed simultaneously, the emission along n0 at point
F 4, F is equivalent to the emission at point E if the intensities are the same. We assume the
time t = 0 when a photon is emitted at point E along n0. A photon emitted at point O along
n0 when t = −τ (τ = |OF |/c) arrives at point F when t = 0 (still along n0). However, at
t = 0, the emission at point O is along n′

0(θ0, φ0 + Ωτ) because of the rotation. Therefore, an
emission along n0 at point E with position vector r is equivalent to the virtual one along n′

0

at origin O. Then we calculate the value τ . In the right-angled triangle OEF, |OF | = r · n0.
We thus have τ = r · n0/c.

3 We call two emission units equivalent if an observer at infinity can not distinguish them, i.e., the observer
detects the same intensity at same time for those two emission units.

4 Point F is the intersection of plane ABC and its perpendicular line through point O.
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Fig. 7 A sketch illustrating the geometry involved in our proposition that an emission along n0 at

point E (position vector r) is equivalent to a virtual emission along n′
0 at the origin.
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