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Magnetospheric activity of bare strange quark stars
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ABSTRACT
In the model of Ruderman and Sutherland, the binding energy problem is a severe problem
when modelling normal neutron stars as pulsars, i.e. both ions (e.g. 56

26Fe) and electrons on
the normal neutron star surface can be pulled out freely by the unipolar generator induced
electric field, so that sparking on the polar cap can hardly occur. This problem can be solved
within the partially screened gap (PSG) model for neutron stars. However, in this paper,
we study this problem extensively in a model of bare strange quark stars (BSSs). We find
that the huge potential barrier built by the electric field in the vacuum gap above the polar
cap can usually prevent electrons from streaming into the magnetosphere, unless the electric
potential of a pulsar is sufficiently lower than that at the infinite interstellar medium. Other
processes, such as the diffusion and thermionic emission of electrons, have also been included
here. Our conclusions are as follows. Both positive and negative particles on the surface of
a BSS are bound strongly enough to form a vacuum gap above its polar cap as long as the
BSS is not charged (or not highly negative charged), and multi-accelerators can occur in the
magnetosphere of the BSS. Our results may be helpful to distinguish normal neutron stars and
bare quark stars using a pulsar’s magnetospheric activities.
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1 IN T RO D U C T I O N

Although pulsar-like stars have many different manifestations, they
are populated mainly by rotation-powered radio pulsars. Much in-
formation about the pulsar radiative process is inferred from the
integrated and individual pulses, the subpulses and even the mi-
crostructures of radio pulses. Among the magnetospheric emission
models, the user-friendly nature of the model of (hereafter RS75
Ruderman & Sutherland 1975) is a virtue not shared by others
(Shukre 1992).

In the RS75 model and its modified versions (e.g. Qiao & Lin
1998), a vacuum gap exists above the polar cap of a pulsar, in which
charged particles (electrons and positrons) are accelerated because
E · B �= 0. These accelerated charged particles, moving along the
curved magnetic field lines, radiate curvature or inverse-Compton-
scattering-induced high-energy photons, which are converted to e±

while propagating in a strong magnetic field. A follow-up break-
down of the vacuum gap produces secondary electron–positron pair
plasma that radiates coherent radio emission. These models with
gap-sparking provide a good framework in which to analyse ob-
servational phenomena, especially drifting (Drake & Craft 1968;
Deshpande & Rankin 1999; Vivekanand & Joshi 1999) and bi-
drifting (Qiao et al. 2004) subpulses.
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However, vacuum gap models that are like the RS75 model work
only under strict conditions: a strong magnetic field and low tem-
perature on the surface of pulsars (e.g. Medin & Lai 2007; Gil et al.
2008). The binding energy of positive ions (e.g. 56

26Fe) necessary for
the RS75 model to work should be higher than ∼10 keV. However,
calculations have shown that the cohesive energy of 56

26Fe at the neu-
tron star surface is <1 keV (Fowlers et al. 1977; Lai 2001). This
binding energy problem can be solved within a partially screened
inner gap model (Gil, Melikidze & Geppert 2003; Gil, Melikidze
& Zhang 2006a; Melikidze & Gil 2009) for normal neutron stars.
Alternatively, it is noted that the binding energy can be sufficiently
high if pulsars are bare strange quark stars (BSSs; Xu & Qiao 1998;
Xu, Qiao & Zhang 1999; Xu, Zhang & Qiao 2001), although strange
stars were previously supposed to exist with crusts (Alcock, Farhi
& Olinto 1986). Certainly, it is very meaningful in the elementary
strong interaction between quarks and the phases of cold quark
matter that the binding energy problem can be solved by bare quark
stars as pulsars (Xu 2009, 2010).

Although the ideas of solving the binding energy problem in
BSS model have been presented and discussed in some studies,
up to now there has been no comprehensive study with quantita-
tive calculations. In this paper, we investigate the BSS model in
quantitative detail and we show the physical picture of the bind-
ing of particles on the surface of a BSS. Our research shows are
that multi-accelerators could occur above the polar cap for (and
only for) curvature-radiation-induced (CR-induced) sparking nor-
mal pulsars (NPs). However, for other cases, such as resonant
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inverse-Compton-scattering-induced (ICS-induced) sparking NPs
and both CR-induced and ICS-induced millisecond pulsars (MSPs),
particles on the surface of BSSs are bound strongly enough to form
a vacuum gap and models like the RS75 model work well if pulsars
are BSSs.

2 AC C E L E R ATO R S A B OV E T H E PO L A R C A P S
O F BA R E S T R A N G E QUA R K S TA R S

On the surface of a BSS, there are positively (u-quarks) and nega-
tively (d- and s-quarks and electrons) charged particles. Quarks are
confined by strong colour interaction, whose binding energy can be
considered as infinity when compared with the electromagnetic in-
teraction, while electrons are bound by electromagnetic interaction.
Therefore, in this paper we focus on the binding of electrons.

First, let us discuss briefly the binding of electrons in the BSS
model. On one hand, assuming the electric potential at the top
of the RS75 vacuum gap is the same as that of the interstellar
medium, we could then have a potential barrier for electrons by
integrating the gap electric field from top to bottom in the vacuum
gap. This potential barrier could then prevent electrons streaming
into the magnetosphere. On the other hand, electrons above the
stellar surface of a BSS are described in the Thomas–Fermi model,
in which the total energy of electrons on the Fermi surface would
be a constant, φ0. In previous work (e.g. Alcock et al. 1986), this
constant was chosen to be zero, φ0 = 0, because the effect of
a spinning BSS with strong magnetic fields was not considered.
Because of the unipolar generator effect, the potential drop between
different magnetic field lines is set up from pole to equatorial plane.
This potential drop could result in different φ0, at different polar
angle, θ . The total energy of electrons would then be obtained by
choosing a certain zero potential magnetic field line (i.e. at θB or
θC in Fig. 1). Finally, by comparing the total energy of electrons
with the height of the potential barrier in the vacuum gap, we can
see whether electrons can stream into the magnetosphere freely
or not.

2.1 Energy of electrons on the Fermi surface

The distribution of electrons in BSSs is described in the Thomas–
Fermi model (Alcock et al. 1986). In this model, the equilibrium of
electrons in an external electric field ensures that the total energy
of each electron on Fermi surface is a constant, φ0. For the case
of extremely relativistic degenerate electron gas, this gives (Alcock
et al. 1986)

ε(r) = cpF(r) − eϕ(r) = φ0. (1)

Here, ε(r) is the total energy, cpF(r) is the Fermi energy, − eϕ(r) is
the electrostatic potential energy of electrons and φ0 is a constant,
describing the potential energy of electrons in the Thomas–Fermi
model at infinity.

However, the potential distribution of electrons on the star’s sur-
face as a result of the electric field induced by the rotating, uniformly
magnetized star, for the sake of simplicity, could be assumed and
estimated as (see equation 2 of Xu, Cui & Qiao 2006)

Vi(θ ) � 3 × 1016B12R
2
6P

−1 sin2 θ (V) + V0. (2)

Here, B12 = B/(1012 G) and R6 = R/(106 cm) is the radius of a
pulsar, P = 2π/� is the pulsar period, θ is the polar angle and
V0 is another constant. Because the distribution of electrons above
the surface of the BSS extends only thousands of femtometres, the
macroscopic potential drop between different magnetic field lines

Figure 1. A schematic representation of the geometry of ‘antipulsars’. CFL
stands for the critical field lines, NCS for the null charge surface and LC for
light cylinder. The enlarged arrows with opposite directions in the annular
region and core region represent the directions of the electric field in the
vacuum gap. ‘A’, ‘B’ and ‘C’ represent the feet of the different magnetic
field lines (see text).

can be thought to be at infinity in the Thomas–Fermi model. Also,
the potential energy related to equation (2), eV i, can be regarded
as the constant, φ0, in equation (1). By choosing a certain zero
potential magnetic field line, we can obtain the total energy of
electrons, namely eV i. Two scenarios are possible here. The first
scenario is that we choose the critical field lines whose feet are at
the same electric potential of the interstellar medium (Goldreich &
Julian 1969) as the zero potential. We also suggest a second choice
in which the zero potential should be at those magnetic field lines
that separate the annular and core regions determined by SAG = SCG

(where SAG and SCG are the stellar surface areas of the annular and
core regions, respectively). The second scenario is based on the idea
that if particles with opposite charge stream into the magnetosphere
with ρGJ in both regions, the areas of these two regions should
approximately be equal in order to keep the star from charging. The
feet of the critical field lines and the magnetic field lines determined
by SAG = SCG are designated as C and B, respectively (Fig. 1). For
the above two scenarios, the total energies, φi = eV i, of the electrons
on the Fermi surface are given, respectively, by

φi,C(θ ) � −3 × 1010B12R
2
6P

−1
(
sin2 θ − sin2 θC

)
MeV, (3)

and

φi,B(θ ) � −3 × 1010B12R
2
6P

−1
(
sin2 θ − sin2 θB

)
MeV. (4)
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Here, θC and θB are polar angles of C and B (see Fig. 1). Equa-
tions (3) and (4) imply that the total energy of electrons is higher
at the poles and decreases towards the equator for an ‘antipulsar’
(� · B > 0), which means that electrons in different regions above
a polar cap may behave differently.

2.2 Potential barrier of electrons in a vacuum gap

In the following, we consider the potential barrier of electrons in a
vacuum gap. Unlike RS75, we perform calculations for the situation
of an ‘antipulsar’ whose magnetic axis is parallel to its spin axis.
A schematic representation of an ‘antipulsar’ is shown in Fig. 1.
Assuming that the electric potential at the top of the RS75 vacuum
gap is the same as that of the interstellar medium, we can obtain a
potential barrier for electrons by integrating the gap electric field
from top to bottom in the vacuum gap. This potential barrier, in a
one-dimensional approximation, is (RS75)

φp(Z) = 2π × 104P −1B12(h3 − Z3)2 MeV, (5)

where h3 = h/(103 cm) is the height of the vacuum gap and Z3 =
Z/(103 cm) is the space coordinate measuring the height above the
quark surface. This potential barrier may prevent electrons from
injecting into the pulsar’s magnetosphere. The height of this po-
tential barrier mainly depends on the height of the vacuum gap,
which is determined by the cascade mechanics of sparking (i.e. the
CR-induced cascade sparking and the ICS-induced cascade spark-
ing). In the CR-induced cascade sparking model, the gap height is
(RS75)

hCR = 5 × 103ρ
2/7
6 B

−4/7
12 P 3/7 cm. (6)

In the ICS-induced cascade sparking model, it is (Zhang, Harding
& Muslimov 2000)

hICS = 2.79 × 104ρ
4/7
6 B

−11/7
12 P 1/7 cm. (7)

In Gil et al. (2006a), the heights of the vacuum gap of both
CR-induced and ICS-induced sparking mechanisms (see equations
21 and 22 of Gil et al. 2006a) are different from what we have
used in this work. In the PSG model, there was a partial flow of
iron ions from the positively charged polar cap, which coexist with
the production of outflowing electron–positron plasmas. Such a
charge-depleted acceleration region is also highly sensitive to both
the critical ion temperature and the actual surface temperature of the
polar cap (Gil et al. 2003). In contrast, in our model, there is no flow
of positively charged particles (i.e. quarks), and also it is insensitive
to the actual surface temperature. This means that there is no partial
screened effect above the polar cap of bare strange quark stars (i.e.
the pure vacuum gap exists on the polar cap of bare strange quark
stars). This is the reason why we use equations (6) and (7) in our
calculation. Whether this choice for the height of the vacuum gap
can result in different drift rates of subpulses or not is a complicated
problem. We discuss this problem very briefly in Section 3. The
potential barrier of electrons in the gap for the CR-induced cascade
sparking model of typical NPs is plotted in Fig. 2, in which the
total energy of electrons at the stellar surface (i.e. φi) is illustrated
at different polar angles. The situation of the CR-induced cascade
sparking of typical MSPs is similar to that of NPs but with a greater
height of the potential barrier.

By comparing the potential barrier with the total energy of elec-
trons, we explain the behaviour of electrons above the polar cap.
That is, only electrons with energy greater than the potential barrier
can escape into the pulsar’s magnetosphere. It is known that the
energy of electrons is a function of the polar angle (equations 3 and

Figure 2. Potential barrier of electrons, φP, in the vacuum gap of typical
NPs (P = 1 s, B = 1012 G). The potential energy of electrons at the stellar
surface, φi(θ ), is illustrated with fixed polar angles (e.g. with 0.6θA and
0.8θA), where θA is the polar angle of the feet of the last open field lines
(see Fig. 1).

Figure 3. Comparison between the total energy of electrons on the stellar
surface with the height of the potential barrier of typical NPs with φi(θC) =
0 and φi(θB) = 0, respectively. The solid horizontal line is the height of the
potential barrier of electrons, φP(Z = 0).

4). As a result, there may be a critical polar angle, θ 0, at which
the energy of electrons equals the height of this potential barrier.
Fig. 3 shows a comparison between the total energy of electrons and
the height of the potential barrier on the stellar surface for typical
NPs of CR-induced sparking (θ 0 does not exist for the ICS-induced
sparking of both NPs and MSPs; see Table 1). The results are as
follows. Free flow status stays in the region of [0, θ 0] and the vac-
uum gap in [θ 0, θA] for ‘antipulsars’, where θA is the polar angle of
the feet of the last open field lines (Fig. 1). We give the results of θ 0

in Table 1 for both the pulsar and ‘antipulsar’. We find that for the
special case of CR-induced sparking NPs, the free flow and vacuum
gap could coexist above the polar cap, which is different from the
previous scenario. The general case is that only the vacuum gap
exists.
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Table 1. Polar angles of θB, θC and θ0 for both CR-induced and ICS-induced sparking of typical
NPs and MSPs within both choices of zero potentials.

θ0,B(θA) θ0,C(θA)
θA (rad) θB(θA) θC(θA) CR ICS CR ICS

0.49 –a 0.58 – � · B > 0
NPs 0.0145 0.69 0.76 0.84 2.76b 0.90 2.83b � · B < 0

– – – – � · B > 0
MSPs 0.145 0.69 0.76 1.492 – 1.522 – � · B < 0

aθ0 does not exist, which means that the whole polar cap region is a vacuum gap.
bθ0 > θA, which means that the whole polar cap region is a vacuum gap.

2.3 Effects of thermionic emission and diffusion of electrons

It follows from the previous argument that electrons inside BSSs
usually cannot stream into magnetospheres. Are there any other
processes that can affect the existence of the vacuum gap above
the polar cap? In the vacuum gap, except for the pulling of elec-
trons from the interior of the BSS, there are two other processes
to be investigated, which could also prevent the vacuum gap from
being formed: the thermionic emission of electrons and the diffu-
sion of electrons from the outer edge to the inner region of the
polar cap. For the first process, if the current density resulting from
thermionic emission of electrons is much smaller than that of the
Goldreich–Julian charge density, the vacuum gap can also be main-
tained. This current density is determined by the Richard–Dushman
equation (Usov & Melrose 1995)

Jth = 1.2 × 1014T 2
6 exp!

(−1.161 × 104T −1
6 φMeV

)
A cm−2, (8)

where me is the electron mass, kB is the Boltzmann constant, T6 =
T/(106 K) is the temperature and φMeV = φ/MeV is the work func-
tion of electrons. In the vacuum gap of BSSs, the work function
of thermionic electrons is the order of the difference between the
height of the potential barrier and the total energy of electrons
at the surface of the BSS. The order of the difference is about
106 MeV. At the same time, the surface temperature of the polar
caps of BSSs is of the order of 106 K. Thus, the thermionic emission
current density is ∼0, which means that the thermionic emission of
electrons cannot affect the existence of the vacuum gap.

The second process is the diffusion of electrons whose distribu-
tion above the surface of a BSS is (Xu et al. 2001)

ne(Z) = 1.187 × 1032φ3
q,MeV

(0.06φq,MeVZ11 + 4)3
cm−3. (9)

Equation (9) implies that the number density of electrons (and the
kinetic energy density, εk) decreases rapidly with an increase of the
distance from the quark matter surface at which εk � εB (where
εB is the magnetic field energy density). As a result, there is a bal-
anced surface where the kinetic energy density equals the magnetic
energy density. Below this balanced surface, electrons can cross the
magnetic field lines freely; above the balanced surface, this motion
is prevented. The physical picture of the diffusion of electrons is
illustrated in Fig. 4. Making use of εk = εB, where εk = neεF (εF is
the Fermi energy of degenerate electrons) and εB = B2/8π, we can
obtain the height of the balanced surface. For NPs, this is Z11 � 160
and for MSPs, it is Z11 � 1.7 × 104, where Z11 = Z/(10−11 cm).
Note that there is a directed outward surface electric field above the
quark matter surface. This surface electric field is much stronger
than the gap electric field, but it decreases rapidly with an increase
of the distance. This means that the surface electric field becomes
smaller than the gap electric field above a certain distance, Z0,11.
For NPs, this is Z0,11 � 7000, and for MSPs, it is Z0,11 � 6.3 ×

Figure 4. A representative illustration of the diffusion of electrons above
the polar cap of a bare strange quark star.

106 (see Fig. 4). For both the NPs and MSPs, we have Z11 � Z0,11.
The diffusion of electrons beneath Z0,11 is still confined by the
surface electric field, which means that it is only necessary to con-
sider the diffusion of electrons above the surface with a height of
Z0,11. The diffusion coefficient, Dc, is given by (Xu et al. 2001)

Dc � ρ2

τF
= πnece

2

B2
= 2.17 × 10−3B−2

12 ne,29 cm2 s−1, (10)

where ρ = γ ρL[ρL = mevc/(eB) is the Larmor radius] is the cy-
clotron radius of relativistic electrons, and τ F � γ m2

ev
3/(πe4ne) is

the mean-free flight time of electrons. The gradient of electrons
along with the diffusion direction is approximately

dne

dx
� ne

ρ
= 1.4 × 1038n

2/3
e,29 cm−4. (11)

Then, the diffusion rate is

Idf = 2.77 × 1029B−1
12 P −1/2R

3/2
6

∫ ∞

Z0,11

n
5/3
e,29 dZ11 s−1, (12)

where ne,29 = ne/(1029 cm−3). For both NPs and MSPs with different
φq, we give the results of the diffusion rate Idf and IGJ in Table 2,

Table 2. Typical value of the diffusion rate for NPs and MSPs with different
choices of φq.

NPs MSPs
φq Idf IGJ Idf IGJ

(MeV) (1024 s−1) (1024 s−1) (1017 s−1) (1017 s−1)

1 ∼4.75 ∼7.52
10 ∼4.91 ∼1.4 × 103 ∼7.52 ∼1.4 × 1013

20 ∼4.93 ∼7.53
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Table 3. Accelerators above the polar caps of BSSs.

[0, θ0]a [θ0, θA]
CR ICS CR ICS

SCLF VG VG VG � · B > 0
NPs VG VGb SCLF VGb � · B < 0

VG VG VG VG � · B > 0
MSPs VGb VG VGb VG � · B < 0

aθ0 represents θ0,B when choosing φB = 0 and θ0,C when choosing
φC = 0.
bFor such cases, θ0 > θA, which represents the structure of the whole polar
cap region.

where the flow with the Goldreich–Julian flux is IGJ = πr2
pcnGJ �

1.4 × 1030P−2R3
6B12 s−1. We know that for both the NPs and MSPs,

Idf � IGJ according to Table 2. This means that the diffusion of
electrons is also negligible, which guarantees the existence of the
vacuum gap.

3 D I S C U S S I O N A N D C O N C L U S I O N S

In the RS75 model, the binding energy problem is one of the most
serious problems in the normal neutron star model of pulsars. Aron
& Scharlemann (1979) have developed an alternative model, the
space-charge limited flow (SCLF) model, in which the particles,
both iron ions and electrons, can be pulled out freely to form a
steady flow (Aron & Scharlemann 1979). In this SCLF model,
the drifting subpulse phenomenon, which has been commonly ob-
served in pulsars, can rarely be reproduced. The prerequisite for
understanding this phenomenon could be the existence of a vacuum
gap.

In a very special case, through our calculations, we find that there
is a new physical scenario for the CR-induced sparking of NPs, in
which the free flow and vacuum gap may coexist above the polar
cap. However, in other cases, such as the ICS-induced sparking of
NPs and MSPs, only the vacuum gap exists. In general, if a pulsar
is not highly negatively charged (Xu et al. 2006), the vacuum gap
also survives at the polar cap. One limitation is that our calculation
is based on the one-dimensional approximation and it might fail in
some cases for MSPs. As far as we know, it is very difficult to deal
with high-dimensional cases. The one-dimensional approximation
provides a good understanding of the geometry of the polar cap of
a BSS. In conclusion, the binding energy problem can be solved
completely in the BSS model of pulsars as long as the BSSs are
neutral (or not highly negative charged), and the structure of the
polar cap of BSSs is very different with respect to that of NSs.
Detailed information about the geometry of the polar cap of BSSs
is given in Table 3. A more interesting region from the pole to
the equator can be located between the polar angle where the total
energy of electrons equals the potential barrier and the polar angle
of the foot of the zero potential magnetic field line [i.e. (θ0,C, θC)
or (θ0,B, θB); see Fig. 3] for CR-induced sparking NPs. After the
birth of a NP, a vacuum gap exists at this region. When sparking
starts, the potential in the vacuum gap drops rapidly because of
screening by electron–positron pairs. It may become lower than
that at the surface, namely V i(θ ). As a result, the sparking converts
the vacuum gap to free flow at this region until the sparking ends
[i.e. at (θ0,C, θC) or (θ0,B, θB), the vacuum gap and free flow work
alternately]. This argument may have profound implications for us
when we wish to distinguish neutron stars and quark stars using the
magnetospheric activities of a pulsar (e.g. the diverse pulse profiles).

Another issue to be discussed concerns the drifting rate of sub-
pulses when we use the height of the pure vacuum gap in this
work. The drifting subpulse phenomenon in the vacuum gap can
be explained naturally by E × B. Unfortunately, these theoretical
calculations have given a higher drifting rate with respect to obser-
vations (e.g. Ruderman & Sutherland 1975; Deshpande & Rankin
1999, 2001; Gil et al. 2003; Gil, Melikidze & Zhang 2006b). Since
it was first observed (Drake & Craft 1968), the drifting subpulse
phenomenon has remained unclear. It has been widely regarded as
one of the most critical and potentially insightful aspects of pul-
sar emission (Deshpande & Rankin 2001). The PSG mechanism
(e.g. Gil et al. 2003, 2006a,b) could be a way to understand the
lower drifting rates observed, but some complexities still exist. This
means that the underlying physics of drifting subpulses remains
complicated and is far from being clear.

(i) In principle, the drifting velocity of subpulses is the ratio of
the drifting distance to the duration, while the expected velocity
predicted by E × B is only for electrons in separated emission
units, namely the plasma filaments. These two velocities would not
be the same if the plasma filaments can stop after sparking. When
sparking starts, the electric field in the vacuum gap vanishes because
of screening by plasmas; when sparking ends, the electric field
appears again. Thus, the calculated drifting velocity with E × B
could be higher than that of observations.

(ii) The so-called aliasing effect. As we observe subpulses only
once every rotation period, we cannot determine their actual speed.
The main obstacles in the aliasing problem are the undersampling
of subpulse motion and our inability to distinguish between sub-
pulses, especially when the differences between subpulses formed
by various subbeams are smaller than the fluctuations in subpulses
from one single subbeam (van Leeuwen et al. 2003). Thus, in the
future, it is very important for this to be studied in detail.

We assume that the potential energy related to equation (2), eV i,
is the constant, φ0, in equation (1). This assumption is reasonable.
For a uniformly magnetized, rotating conductor sphere, the unipolar
generator will induce an electric field, which is a function of the
polar angle, as described in equation (2). In the case of � · B >

0 (Fig. 1), the potential energy of electrons is highest at the polar
region, which means that the electrons there could find it easier to
escape. Alternatively, this conclusion can be quantitatively under-
stood as follows. Because of the Lorentz force inside a star, more
electrons are located at the polar region, so the Fermi energy of
electrons is higher there and the electrons find it easier to escape
into the magnetosphere.
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